
DECEMBER	29,	2017 POSTS 	 COMMENTS

No	boundaries	for	user	identities:	Web	trackers	exploit
browser	login	managers
DECEMBER	27,	2017	BY	GUNES	ACAR	 4	COMMENTS

In	this	second	installment	of	the	No	Boundaries	series,	we	show	how	a	long-known	vulnerability	in
browsers’	built-in	password	managers	is	abused	by	third-party	scripts	for	tracking	on	more	than	a
thousand	sites.

by	Gunes	Acar,	Steven	Englehardt,	and	Arvind	Narayanan

We	show	how	third-party	scripts	exploit	browsers’	built-in	login	managers	(also	called	password
managers)	to	retrieve	and	exfiltrate	user	identifiers	without	user	awareness.	To	the	best	of	our
knowledge,	our	research	is	the	first	to	show	that	login	managers	are	being	abused	by	third-party	scripts
for	the	purposes	of	web	tracking.

The	underlying	vulnerability	of	login	managers	to	credential	theft	has	been	known	for	years.	Much	of
the	past	discussion	has	focused	on	password	exfiltration	by	malicious	scripts	through	cross-site	scripting
(XSS)	attacks.	Fortunately,	we	haven’t	found	password	theft	on	the	50,000	sites	that	we	analyzed.	Instead,
we	found	tracking	scripts	embedded	by	the	first	party	abusing	the	same	technique	to	extract	emails
addresses	for	building	tracking	identifiers.

The	image	above	shows	the	process.	First,	a	user	fills	out	a	login	form	on	the	page	and	asks	the	browser
to	save	the	login.	The	tracking	script	is	not	present	on	the	login	page	[1].	Then,	the	user	visits	another
page	on	the	same	website	which	includes	the	third-party	tracking	script.	The	tracking	script	inserts	an
invisible	login	form,	which	is	automatically	filled	in	by	the	browser’s	login	manager.	The	third-party
script	retrieves	the	user’s	email	address	by	reading	the	populated	form	and	sends	the	email	hashes	to
third-party	servers.

You	can	test	the	attack	yourself	on	our	live	demo	page.

Freedom	to	Tinker	is	hosted	by
Princeton's	Center	for	Information
Technology	Policy,	a	research	center
that	studies	digital	technologies	in
public	life.	Here	you'll	find	comment
and	analysis	from	the	digital	frontier,
written	by	the	Center's	faculty,
students,	and	friends.

Search	this	website	… Search

What	We	Discuss
AACS	bitcoin	CD	Copy
Protection	censorship	CITP
Competition	Computing	in	the
Cloud	Copyright	Cross-Border
Issues	cybersecurity	policy	DMCA
DRM	Education	Events
Facebook	FCC	Government
Government	transparency
Grokster	Case	Humor
Innovation	Policy	Law
Managing	the	Internet
Media	Misleading	Terms	NSA	Online
Communities	Patents	Peer-to-
Peer	Predictions	Princeton
Privacy	Publishing
Recommended	Reading	Secrecy
Security	Spam	Super-
DMCA	surveillance
Tech/Law/Policy	Blogs
Technology	andFreedom	Virtual	Worlds

Voting	Wiretapping	WPM

Contributors
Select	Author...

Archives	by	Month
2017:	J	F	M	A	M	J	J	A	S	O	N	D
2016:	J	F	M	A	M	J	J	A	S	O	N	D
2015:	J	F	M	A	M	J	J	A	S	O	N	D
2014:	J	F	M	A	M	J	J	A	S	O	N	D
2013:	J	F	M	A	M	J	J	A	S	O	N	D
2012:	J	F	M	A	M	J	J	A	S	O	N	D
2011:	J	F	M	A	M	J	J	A	S	O	N	D
2010:	J	F	M	A	M	J	J	A	S	O	N	D
2009:	J	F	M	A	M	J	J	A	S	O	N	D
2008:	J	F	M	A	M	J	J	A	S	O	N	D
2007:	J	F	M	A	M	J	J	A	S	O	N	D
2006:	J	F	M	A	M	J	J	A	S	O	N	D

https://freedom-to-tinker.com/feed/rss/
https://freedom-to-tinker.com/comments/feed/
https://freedom-to-tinker.com/
https://freedom-to-tinker.com/author/gacar/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#comments
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://web.archive.org/web/20120605184841/http://ha.ckers.org/blog/20060821/stealing-user-information-via-automatic-form-filling/
http://homakov.blogspot.com/2012/11/xss-save-your-password-pwned.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1107422#c2
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-silver.pdf
https://senglehardt.com/demo/no_boundaries/loginmanager/
https://citp.princeton.edu/
https://citp.princeton.edu/
https://freedom-to-tinker.com/tag/aacs/
https://freedom-to-tinker.com/tag/bitcoin/
https://freedom-to-tinker.com/tag/cd-copy-protection/
https://freedom-to-tinker.com/tag/censorship/
https://freedom-to-tinker.com/tag/citp/
https://freedom-to-tinker.com/tag/competition/
https://freedom-to-tinker.com/tag/computing-in-the-cloud/
https://freedom-to-tinker.com/tag/copyright/
https://freedom-to-tinker.com/tag/cross-border-issues/
https://freedom-to-tinker.com/tag/cybersecurity-policy/
https://freedom-to-tinker.com/tag/dmca/
https://freedom-to-tinker.com/tag/drm/
https://freedom-to-tinker.com/tag/education/
https://freedom-to-tinker.com/tag/events/
https://freedom-to-tinker.com/tag/facebook/
https://freedom-to-tinker.com/tag/fcc/
https://freedom-to-tinker.com/tag/government/
https://freedom-to-tinker.com/tag/government-transparency/
https://freedom-to-tinker.com/tag/grokster-case/
https://freedom-to-tinker.com/tag/humor/
https://freedom-to-tinker.com/tag/innovation-policy/
https://freedom-to-tinker.com/tag/law/
https://freedom-to-tinker.com/tag/managing-the-internet/
https://freedom-to-tinker.com/tag/media/
https://freedom-to-tinker.com/tag/misleading-terms/
https://freedom-to-tinker.com/tag/nsa/
https://freedom-to-tinker.com/tag/online-communities/
https://freedom-to-tinker.com/tag/patents/
https://freedom-to-tinker.com/tag/peer-to-peer/
https://freedom-to-tinker.com/tag/predictions/
https://freedom-to-tinker.com/tag/princeton/
https://freedom-to-tinker.com/tag/privacy/
https://freedom-to-tinker.com/tag/publishing/
https://freedom-to-tinker.com/tag/recommended-reading/
https://freedom-to-tinker.com/tag/secrecy/
https://freedom-to-tinker.com/tag/security/
https://freedom-to-tinker.com/tag/spam/
https://freedom-to-tinker.com/tag/super-dmca/
https://freedom-to-tinker.com/tag/surveillance/
https://freedom-to-tinker.com/tag/techlawpolicy-blogs/
https://freedom-to-tinker.com/tag/technology-and-freedom/
https://freedom-to-tinker.com/tag/virtual-worlds/
https://freedom-to-tinker.com/tag/voting/
https://freedom-to-tinker.com/tag/wiretapping/
https://freedom-to-tinker.com/tag/wpm/
https://freedom-to-tinker.com/2017/
https://freedom-to-tinker.com/2017/01/
https://freedom-to-tinker.com/2017/02/
https://freedom-to-tinker.com/2017/03/
https://freedom-to-tinker.com/2017/04/
https://freedom-to-tinker.com/2017/05/
https://freedom-to-tinker.com/2017/06/
https://freedom-to-tinker.com/2017/07/
https://freedom-to-tinker.com/2017/08/
https://freedom-to-tinker.com/2017/09/
https://freedom-to-tinker.com/2017/10/
https://freedom-to-tinker.com/2017/11/
https://freedom-to-tinker.com/2017/12/
https://freedom-to-tinker.com/2016/
https://freedom-to-tinker.com/2016/01/
https://freedom-to-tinker.com/2016/02/
https://freedom-to-tinker.com/2016/03/
https://freedom-to-tinker.com/2016/04/
https://freedom-to-tinker.com/2016/05/
https://freedom-to-tinker.com/2016/07/
https://freedom-to-tinker.com/2016/08/
https://freedom-to-tinker.com/2016/09/
https://freedom-to-tinker.com/2016/10/
https://freedom-to-tinker.com/2016/11/
https://freedom-to-tinker.com/2016/12/
https://freedom-to-tinker.com/2015/
https://freedom-to-tinker.com/2015/01/
https://freedom-to-tinker.com/2015/02/
https://freedom-to-tinker.com/2015/03/
https://freedom-to-tinker.com/2015/04/
https://freedom-to-tinker.com/2015/05/
https://freedom-to-tinker.com/2015/06/
https://freedom-to-tinker.com/2015/07/
https://freedom-to-tinker.com/2015/08/
https://freedom-to-tinker.com/2015/09/
https://freedom-to-tinker.com/2015/10/
https://freedom-to-tinker.com/2015/11/
https://freedom-to-tinker.com/2015/12/
https://freedom-to-tinker.com/2014/
https://freedom-to-tinker.com/2014/01/
https://freedom-to-tinker.com/2014/02/
https://freedom-to-tinker.com/2014/03/
https://freedom-to-tinker.com/2014/04/
https://freedom-to-tinker.com/2014/05/
https://freedom-to-tinker.com/2014/06/
https://freedom-to-tinker.com/2014/07/
https://freedom-to-tinker.com/2014/08/
https://freedom-to-tinker.com/2014/09/
https://freedom-to-tinker.com/2014/10/
https://freedom-to-tinker.com/2014/11/
https://freedom-to-tinker.com/2014/12/
https://freedom-to-tinker.com/2013/
https://freedom-to-tinker.com/2013/01/
https://freedom-to-tinker.com/2013/02/
https://freedom-to-tinker.com/2013/03/
https://freedom-to-tinker.com/2013/04/
https://freedom-to-tinker.com/2013/05/
https://freedom-to-tinker.com/2013/06/
https://freedom-to-tinker.com/2013/07/
https://freedom-to-tinker.com/2013/08/
https://freedom-to-tinker.com/2013/09/
https://freedom-to-tinker.com/2013/10/
https://freedom-to-tinker.com/2013/11/
https://freedom-to-tinker.com/2013/12/
https://freedom-to-tinker.com/2012/
https://freedom-to-tinker.com/2012/01/
https://freedom-to-tinker.com/2012/02/
https://freedom-to-tinker.com/2012/03/
https://freedom-to-tinker.com/2012/04/
https://freedom-to-tinker.com/2012/05/
https://freedom-to-tinker.com/2012/06/
https://freedom-to-tinker.com/2012/07/
https://freedom-to-tinker.com/2012/09/
https://freedom-to-tinker.com/2012/10/
https://freedom-to-tinker.com/2012/11/
https://freedom-to-tinker.com/2012/12/
https://freedom-to-tinker.com/2011/
https://freedom-to-tinker.com/2011/01/
https://freedom-to-tinker.com/2011/02/
https://freedom-to-tinker.com/2011/03/
https://freedom-to-tinker.com/2011/04/
https://freedom-to-tinker.com/2011/05/
https://freedom-to-tinker.com/2011/06/
https://freedom-to-tinker.com/2011/07/
https://freedom-to-tinker.com/2011/08/
https://freedom-to-tinker.com/2011/09/
https://freedom-to-tinker.com/2011/10/
https://freedom-to-tinker.com/2011/11/
https://freedom-to-tinker.com/2011/12/
https://freedom-to-tinker.com/2010/
https://freedom-to-tinker.com/2010/01/
https://freedom-to-tinker.com/2010/02/
https://freedom-to-tinker.com/2010/03/
https://freedom-to-tinker.com/2010/04/
https://freedom-to-tinker.com/2010/05/
https://freedom-to-tinker.com/2010/06/
https://freedom-to-tinker.com/2010/07/
https://freedom-to-tinker.com/2010/08/
https://freedom-to-tinker.com/2010/09/
https://freedom-to-tinker.com/2010/10/
https://freedom-to-tinker.com/2010/11/
https://freedom-to-tinker.com/2010/12/
https://freedom-to-tinker.com/2009/
https://freedom-to-tinker.com/2009/01/
https://freedom-to-tinker.com/2009/02/
https://freedom-to-tinker.com/2009/03/
https://freedom-to-tinker.com/2009/04/
https://freedom-to-tinker.com/2009/05/
https://freedom-to-tinker.com/2009/06/
https://freedom-to-tinker.com/2009/07/
https://freedom-to-tinker.com/2009/08/
https://freedom-to-tinker.com/2009/09/
https://freedom-to-tinker.com/2009/10/
https://freedom-to-tinker.com/2009/11/
https://freedom-to-tinker.com/2009/12/
https://freedom-to-tinker.com/2008/
https://freedom-to-tinker.com/2008/01/
https://freedom-to-tinker.com/2008/02/
https://freedom-to-tinker.com/2008/03/
https://freedom-to-tinker.com/2008/04/
https://freedom-to-tinker.com/2008/05/
https://freedom-to-tinker.com/2008/06/
https://freedom-to-tinker.com/2008/07/
https://freedom-to-tinker.com/2008/08/
https://freedom-to-tinker.com/2008/09/
https://freedom-to-tinker.com/2008/10/
https://freedom-to-tinker.com/2008/11/
https://freedom-to-tinker.com/2008/12/
https://freedom-to-tinker.com/2007/
https://freedom-to-tinker.com/2007/01/
https://freedom-to-tinker.com/2007/02/
https://freedom-to-tinker.com/2007/03/
https://freedom-to-tinker.com/2007/04/
https://freedom-to-tinker.com/2007/05/
https://freedom-to-tinker.com/2007/06/
https://freedom-to-tinker.com/2007/07/
https://freedom-to-tinker.com/2007/08/
https://freedom-to-tinker.com/2007/09/
https://freedom-to-tinker.com/2007/10/
https://freedom-to-tinker.com/2007/11/
https://freedom-to-tinker.com/2007/12/
https://freedom-to-tinker.com/2006/
https://freedom-to-tinker.com/2006/01/
https://freedom-to-tinker.com/2006/02/
https://freedom-to-tinker.com/2006/03/
https://freedom-to-tinker.com/2006/04/
https://freedom-to-tinker.com/2006/05/
https://freedom-to-tinker.com/2006/06/
https://freedom-to-tinker.com/2006/07/
https://freedom-to-tinker.com/2006/08/
https://freedom-to-tinker.com/2006/09/
https://freedom-to-tinker.com/2006/10/
https://freedom-to-tinker.com/2006/11/
https://freedom-to-tinker.com/2006/12/


We	found	two	scripts	using	this	technique	to	extract	email	addresses	from	login	managers	on	the
websites	which	embed	them.	These	addresses	are	then	hashed	and	sent	to	one	or	more	third-party
servers.	These	scripts	were	present	on	1110	of	the	Alexa	top	1	million	sites.	The	process	of	detecting
these	scripts	is	described	in	our	measurement	methodology	in	the	Appendix	1.	We	provide	a	brief
analysis	of	each	script	in	the	sections	below.

Why	does	the	attack	work?	All	major	browsers	have	built-in	login	managers	that	save	and
automatically	fill	in	username	and	password	data	to	make	the	login	experience	more	seamless.	The	set	of
heuristics	used	to	determine	which	login	forms	will	be	autofilled	varies	by	browser,	but	the	basic
requirement	is	that	a	username	and	password	field	be	available.

Login	form	autofilling	in	general	doesn’t	require	user	interaction;	all	of	the	major	browsers	will	autofill
the	username	(often	an	email	address)	immediately,	regardless	of	the	visibility	of	the	form.	Chrome
doesn’t	autofill	the	password	field	until	the	user	clicks	or	touches	anywhere	on	the	page.	Other	browsers
we	tested	[2]	don’t	require	user	interaction	to	autofill	password	fields.

Thus,	third-party	javascript	can	retrieve	the	saved	credentials	by	creating	a	form	with	the	username	and
password	fields,	which	will	then	be	autofilled	by	the	login	manager.

Why	collect	hashes	of	email	addresses?	Email	addresses	are	unique	and	persistent,	and	thus	the	hash
of	an	email	address	is	an	excellent	tracking	identifier.	A	user’s	email	address	will	almost	never	change	—
clearing	cookies,	using	private	browsing	mode,	or	switching	devices	won’t	prevent	tracking.	The	hash	of
an	email	address	can	be	used	to	connect	the	pieces	of	an	online	profile	scattered	across	different
browsers,	devices,	and	mobile	apps.	It	can	also	serve	as	a	link	between	browsing	history	profiles	before
and	after	cookie	clears.	In	a	previous	blog	post	on	email	tracking,	we	described	in	detail	why	a
hashed	email	address	is	not	an	anonymous	identifier.

Scripts	exploiting	browser	login	managers
List	of	sites	embedding	scripts	that	abuse	login	manager	for	tracking
“Smart	Advertising	Performance”	and	“Big	Data	Marketing”	are	the	taglines	used	by	the	two	companies
who	own	the	scripts	that	abuse	login	managers	to	extract	email	addresses.	We	have	manually	analyzed
the	scripts	that	contained	the	attack	code	and	verified	the	attack	steps	described	above.	The	snippets
from	the	two	scripts	are	given	in	Appendix	2.

The	scripts	that	use	login	manager	to	extract	email	addresses	present	on	a	total	of	1110
of	the	top	1	Million	Alexa	sites.

	

Adthink	(audienceinsights.net):	After	injecting	an	invisible	form	and	reading	the	email	address,
Adthink	script	sends	MD5,	SHA1	and	SHA256	hashes	of	the	email	address	to	its	server
(secure.audienceinsights.net).	Adthink	then	triggers	another	request	containing	the	MD5	hash	of	the
email	to	data	broker	Acxiom	(p-eu.acxiom-online.com).

The	Adthink	script	contains	very	detailed	categories	for	personal,	financial,	physical	traits,	as	well	as
intents,	interests	and	demographics.	It	is	hard	to	comment	on	the	exact	use	of	these	categories	but	it
gives	a	glimpse	of	what	our	online	profiles	are	made	up	of:

birth	date,	age,	gender,	nationality,	height,	weight,	BMI	(body	mass	index),	hair_color	(black,	brown,

blond,	auburn,	chestnut,	red,	gray,	white),	eye_color	(amber,	blue,	brown,	grey,	green),	education,

occupation,	net_income,	raw_income,	relationship	states,	seek_for_gender	(m,	f,	transman,	transwoman,

couple),	pets,	location	(postcode,	town,	state,	country),	loan	(type,	amount,	duration,	overindebted),

insurance	(car,	motorbike,	home,	pet,	health,	life),	card_risk	(chargeback,	fraud_attempt),	has_car(make,

2005:	J	F	M	A	M	J	J	A	S	O	N	D
2004:	J	F	M	A	M	J	J	A	S	O	N	D
2003:	J	F	M	A	M	J	J	A	S	O	N	D
2002:	J	F	M	A	M	J	J	A	S	O	N	D

author	log	in

00:00	/	00:00

http://www.cs.columbia.edu/~suman/docs/suman_pwdmgr.pdf
https://searchfox.org/mozilla-central/source/toolkit/components/passwordmgr/LoginManagerContent.jsm#1069
https://freedom-to-tinker.com/2017/09/28/i-never-signed-up-for-this-privacy-implications-of-email-tracking/
https://webtransparency.cs.princeton.edu/no_boundaries/autofill_sites.html
https://freedom-to-tinker.com/2005/
https://freedom-to-tinker.com/2005/01/
https://freedom-to-tinker.com/2005/02/
https://freedom-to-tinker.com/2005/03/
https://freedom-to-tinker.com/2005/04/
https://freedom-to-tinker.com/2005/05/
https://freedom-to-tinker.com/2005/06/
https://freedom-to-tinker.com/2005/07/
https://freedom-to-tinker.com/2005/08/
https://freedom-to-tinker.com/2005/09/
https://freedom-to-tinker.com/2005/10/
https://freedom-to-tinker.com/2005/11/
https://freedom-to-tinker.com/2005/12/
https://freedom-to-tinker.com/2004/
https://freedom-to-tinker.com/2004/01/
https://freedom-to-tinker.com/2004/02/
https://freedom-to-tinker.com/2004/03/
https://freedom-to-tinker.com/2004/04/
https://freedom-to-tinker.com/2004/05/
https://freedom-to-tinker.com/2004/06/
https://freedom-to-tinker.com/2004/07/
https://freedom-to-tinker.com/2004/08/
https://freedom-to-tinker.com/2004/09/
https://freedom-to-tinker.com/2004/10/
https://freedom-to-tinker.com/2004/11/
https://freedom-to-tinker.com/2004/12/
https://freedom-to-tinker.com/2003/
https://freedom-to-tinker.com/2003/01/
https://freedom-to-tinker.com/2003/02/
https://freedom-to-tinker.com/2003/03/
https://freedom-to-tinker.com/2003/04/
https://freedom-to-tinker.com/2003/05/
https://freedom-to-tinker.com/2003/06/
https://freedom-to-tinker.com/2003/07/
https://freedom-to-tinker.com/2003/08/
https://freedom-to-tinker.com/2003/09/
https://freedom-to-tinker.com/2003/10/
https://freedom-to-tinker.com/2003/11/
https://freedom-to-tinker.com/2003/12/
https://freedom-to-tinker.com/2002/
https://freedom-to-tinker.com/2002/07/
https://freedom-to-tinker.com/2002/08/
https://freedom-to-tinker.com/2002/09/
https://freedom-to-tinker.com/2002/10/
https://freedom-to-tinker.com/2002/11/
https://freedom-to-tinker.com/2002/12/
https://freedom-to-tinker.com/wp-admin/


The	categories	mentioned	in	the	Adthink	script	include	detailed	personal,	financial,	physical	traits,	as
well	as	intents,	interests	and	demographics	(Link	to	the	code	snippet).

model,	type,	registration,	model	year,	fuel	type),	tobacco,	alcohol,	travel	(from,	to,	departure,

return),	car_hire_driver_age,	hotel_stars

	

OnAudience	(behavioralengine.com):	The	OnAudience	script	is	most	commonly	present	on	Polish
websites,	including	newspapers,	ISPs	and	online	retailers.	45	of	the	63	sites	that	contain	OnAudience
script	have	“.pl”	country	code	top-level	domain.

The	script	sends	the	MD5	hash	of	the	email	back	to	its	server	after	reading	it	through	the	login	manager.
OnAudience	script	also	collects	browser	features	including	plugins,	MIME	types,	screen	dimensions,
language,	timezone	information,	user	agent	string,	OS	and	CPU	information.	The	script	then	generates	a
hash	based	on	this	browser	fingerprint.	OnAudience	claims	to	use	anonymous	data	only,	but	hashed
email	addresses	are	not	anonymous.	If	an	attacker	wants	to	determine	whether	a	user	is	in	the	dataset,
they	can	simply	hash	the	user’s	email	address	and	search	for	records	associated	with	that	hash.	For	a
more	detailed	discussion,	see	our	previous	blog	post.

OnAudience	marketing	material	that	advertises	“billions	of	user	profiles”.

	

Is	this	attack	new?	This	and	similar	attacks	have	been	discussed	in	a	number	of	browser	bug	reports
and	academic	papers	for	at	least	11	years.	Much	of	the	previous	discussion	focuses	on	the	security
implications	of	the	current	functionality,	and	on	the	security-usability	tradeoff	of	the	autofill	functionality.

Several	researchers	showed	that	it	is	possible	to	steal	passwords	from	login	managers	through	cross-site
scripting	(XSS)	attacks	[3,4,5,6,7].	Login	managers	and	XSS	is	a	dangerous	mixture	for	two	reasons:	1)
passwords	retrieved	by	XSS	can	have	more	devastating	effects	compared	to	cookie	theft,	as	users
commonly	reuse	passwords	across	different	sites;	2)	login	managers	extend	the	attack	surface	for
the	password	theft,	as	an	XSS	attack	can	steal	passwords	on	any	page	within	a	site,	even	those	which
don’t	contain	a	login	form.

How	did	we	get	here?	You	may	wonder	how	a	security	vulnerability	persisted	for	11	years.	That’s
because	from	a	narrow	browser	security	perspective,	there	is	no	vulnerability,	and	everything	is	working
as	intended.	Let	us	explain.

The	web’s	security	rests	on	the	Same	Origin	Policy.	In	this	model,	scripts	and	content	from	different
origins	(roughly,	domains	or	websites)	are	treated	as	mutually	untrusting,	and	the	browser	protects	them
from	interfering	with	each	other.	However,	if	a	publisher	directly	embeds	a	third-party	script,	rather	than
isolating	it	in	an	iframe,	the	script	is	treated	as	coming	from	the	publisher’s	origin.	Thus,	the	publisher
(and	its	users)	entirely	lose	the	protections	of	the	same	origin	policy,	and	there	is	nothing	preventing	the
script	from	exfiltrating	sensitive	information.	Sadly,	direct	embedding	is	common	—	and,	in	fact,	the
default	—	which	also	explains	why	the	vulnerabilities	we	exposed	in	our	previous	post	were	possible.

This	model	is	a	poor	fit	for	reality.	Publishers	neither	completely	trust	nor	completely	mistrust	third
parties,	and	thus	neither	of	the	two	options	(iframe	sandboxing	and	direct	embedding)	is	a	good	fit:	one
limits	functionality	and	the	other	is	a	privacy	nightmare.	We’ve	found	repeatedly	through	our	research
that	third	parties	are	quite	opaque	about	the	behavior	of	their	scripts,	and	at	any	rate,	most	publishers
don’t	have	the	time	or	technical	knowhow	to	evaluate	them.	Thus,	we’re	stuck	with	this	uneasy
relationship	between	publishers	and	third	parties	for	the	foreseeable	future.

The	browser	vendor’s	dilemma.	It	is	clear	that	the	Same-Origin	Policy	is	a	poor	fit	for	trust
relationships	on	the	web	today,	and	that	other	security	defenses	would	help.	But	there	is	another	dilemma
for	browser	vendors:	should	they	defend	against	this	and	other	similar	vulnerabilities,	or	view	it	as	the

https://gist.github.com/gunesacar/6de71057fc15074d94cda5c344b06cbb
http://www.onaudience.com/index.php?action=dataexchange
https://freedom-to-tinker.com/2017/09/28/i-never-signed-up-for-this-privacy-implications-of-email-tracking/
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://bugzilla.mozilla.org/show_bug.cgi?id=360493
http://crypto.stanford.edu/~dabo/pubs/papers/pwdmgrBrowser.pdf
https://www.ben-stock.de/wp-content/uploads/asiacss2014.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=359675
http://www.jbonneau.com/doc/DBCBW14-NDSS-tangled_web.pdf
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/


publisher’s	fault	for	embedding	the	third	party	at	all?

There	are	good	arguments	for	both	views.	Currently	browser	vendors	seem	to	adopt	the	latter	for	the
login	manager	issue,	viewing	it	as	the	publisher’s	burden.	In	general,	there	is	no	principled	way	to	defend
against	third	parties	that	are	present	on	some	pages	on	a	site	from	accessing	sensitive	data	on	other
pages	of	the	same	site.	For	example,	if	a	user	simultaneously	has	two	tabs	from	the	same	site	open	—	one
containing	a	login	form	but	no	third	party,	and	vice	versa	—	then	the	third-party	script	can	“reach	across”
browser	tabs	and	exfiltrate	the	login	information	under	certain	circumstances.	By	embedding	a	third
party	anywhere	on	its	site,	the	publisher	signals	that	it	completely	trusts	the	third	party.

Yet,	in	other	cases,	browser	vendors	have	chosen	to	adopt	defenses	even	if	necessarily	imperfect.	For
example,	the	HTTPOnly	cookie	attribute	was	introduced	to	limit	the	impact	of	XSS	attacks	by	blocking
the	script	access	to	security	critical	cookies.

There	is	another	relevant	factor:	our	discovery	means	that	autofill	is	not	just	a	security	vulnerability	but
also	a	privacy	threat.	While	the	security	community	strongly	prefers	principled	solutions	whenever
possible,	when	it	comes	to	web	tracking,	we	have	generally	been	willing	to	embrace	more	heuristic
defenses	such	as	blocklists.

Countermeasures.	Publishers,	users,	and	browser	vendors	can	all	take	steps	to	prevent	autofill	data
exfiltration.	We	discuss	each	in	turn.

Publishers	can	isolate	login	forms	by	putting	them	on	a	separate	subdomain,	which	prevents	autofill	from
working	on	non-login	pages.	This	does	have	drawbacks	including	an	increase	in	engineering	complexity.
Alternately	they	could	isolate	third	parties	using	frameworks	like	Safeframe.	Safeframe	makes	it	easier
for	the	publisher	scripts	and	iframed	scripts	to	communicate,	thus	blunting	the	effect	of	sandboxing.	Any
such	technique	requires	additional	engineering	by	the	publisher	compared	to	simply	dropping	a	third-
party	script	into	the	web	page.

Users	can	install	ad	blockers	or	tracking	protection	extensions	to	prevent	tracking	by	invasive	third-party
scripts.	The	domains	used	to	serve	the	two	scripts	(behavioralengine.com	and	audienceinsights.net)	are
blocked	by	the	EasyPrivacy	blocklist.

Now	we	turn	to	browsers.	The	simplest	defense	is	to	allow	users	to	disable	login	autofill.	For	instance,	the
Firefox	preference	signon.autofillForms	can	be	set	to	false	to	disable	autofilling	of	credentials.

A	less	crude	defense	is	to	require	user	interaction	before	autofilling	login	forms.	Browser	vendors	have
been	reluctant	to	do	this	because	of	the	usability	overhead,	but	given	the	evidence	of	autofill	abuse	in	the
wild,	this	overhead	might	be	justifiable.

The	upcoming	W3C	Credential	Management	API	requires	browsers	to	display	a	notification	when	user
credentials	are	provided	to	a	page	[8].	Browsers	may	display	the	same	notification	when	login
information	is	autofilled	by	the	built-in	login	managers.	Displays	of	this	type	won’t	directly	prevent	abuse,
but	they	make	attacks	more	visible	to	publishers	and	privacy-conscious	users.

Finally,	the	“writeonly	form	fields”	idea	can	be	a	promising	direction	to	secure	login	forms	in	general.
The	briefly	discussed	proposal	defines	ways	to	deny	read	access	to	form	elements	and	suggests	the
use	of	placeholder	nonces	to	protect	autofilled	credentials	[9].

Conclusion

Built-in	login	managers	have	a	positive	effect	on	web	security:	they	curtail	password	reuse	by	making	it
easy	to	use	complex	passwords,	and	they	make	phishing	attacks	are	harder	to	mount.	Yet,	browser
vendors	should	reconsider	allowing	stealthy	access	to	autofilled	login	forms	in	the	light	of	our	findings.
More	generally,	for	every	browser	feature,	browser	developers	and	standard	bodies	should	consider	how	it
might	be	abused	by	untrustworthy	third-party	scripts.

End	notes:

[1]	We	found	that	login	pages	contain	25%	fewer	third-parties	compared	to	pages	without	login	forms.
The	analysis	was	based	on	our	crawl	of	300,000	pages	from	50,000	sites.
[2]	We	tested	the	following	browsers:	Firefox,	Chrome,	Internet	Explorer,	Edge,	Safari.
[3]	https://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
[4]	https://www.honoki.net/2014/05/grab-password-with-xss/
[5]	https://web.archive.org/web/20150131032001/http://ha.ckers.org:80/blog/20060821/stealing-
user-information-via-automatic-form-filling/
[6]	http://www.martani.net/2009/08/xss-steal-passwords-using-javascript.html
[7]	https://ancat.github.io/xss/2017/01/08/stealing-plaintext-passwords.html
[8]	“User	agents	MUST	notify	users	when	credentials	are	provided	to	an	origin.	This	could	take	the	form
of	an	icon	in	the	address	bar,	or	some	similar	location.”	https://w3c.github.io/webappsec-credential-
management/#user-mediation-requirement
[9]	Originally	proposed	in	https://www.ben-stock.de/wp-content/uploads/asiacss2014.pdf
[10]	https://jacob.hoffman-andrews.com/README/2017/01/15/how-not-to-get-phished.html

APPENDICES

Appendix	1	–	Methodology

https://medium.com/@bluepnume/every-known-way-to-get-references-to-windows-in-javascript-223778bede2d
https://www.iab.com/guidelines/safeframe/
https://w3c.github.io/webappsec-credential-management/
https://mikewest.github.io/credentialmanagement/writeonly
https://lists.w3.org/Archives/Public/public-webapps/2014JulSep/0165.html
https://mikewest.github.io/credentialmanagement/writeonly/#security-sandboxing
https://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
https://www.honoki.net/2014/05/grab-password-with-xss/
https://web.archive.org/web/20150131032001/http://ha.ckers.org:80/blog/20060821/stealing-user-information-via-automatic-form-filling/
http://www.martani.net/2009/08/xss-steal-passwords-using-javascript.html
https://ancat.github.io/xss/2017/01/08/stealing-plaintext-passwords.html
https://w3c.github.io/webappsec-credential-management/#user-mediation-requirement
https://www.ben-stock.de/wp-content/uploads/asiacss2014.pdf
https://jacob.hoffman-andrews.com/README/2017/01/15/how-not-to-get-phished.html


To	study	password	manager	abuse,	we	extended	OpenWPM	to	simulate	a	user	with	saved	login	credentials
and	added	instrumentation	to	monitor	form	access.	We	used	Firefox’s	nsILoginManager	interface	to
add	login	credentials	as	if	they	were	previously	stored	by	the	user.	We	did	not	otherwise	alter	the
functionality	of	the	password	manager	or	attempt	to	manually	fill	login	forms.	This	allowed	us	to	capture
actual	abuses	of	the	browser	login	manager,	as	any	exfiltrated	data	must	have	originated	from	the	login
manager.

We	crawled	50,000	sites	from	the	Alexa	top	1	million.	We	used	the	following	sampling	strategy:	visit	all	of
the	top	15,000	sites,	randomly	sample	15,000	sites	from	the	Alexa	rank	range	[15,000	100,000),	and
randomly	sample	20,000	sites	from	the	range	[100,000,	1,000,000).	This	combination	allowed	us	to
observe	the	attacks	on	both	high	and	low	traffic	sites.	On	each	of	these	50,000	sites	we	visited	6	pages:
the	front	page	and	a	set	of	5	other	pages	randomly	sampled	from	the	internal	links	on	the	front	page.

The	fake	login	credentials	acted	as	bait,	allowing	us	to	introduce	an	email	and	password	to	the	page	that
could	be	collected	by	third	parties	without	any	additional	interaction.	Detection	of	email	address
collection	was	done	by	inspecting	JavaScript	calls	related	to	form	creation	and	access,	and	by	the	analysis
of	the	HTTP	traffic.	Specifically,	we	used	the	following	instrumentation:

1.	 Mutation	events	to	monitor	elements	inserted	to	the	page	DOM.	This	allowed	us	to	detect	the
injection	of	fake	login	forms.	When	a	mutation	event	fires,	we	record	the	current	call	stack	and
serialize	the	inserted	HTML	elements.

2.	 Instrument	HTMLInputElement	to	intercept	access	to	form	input	fields.	We	log	the	input	field	value
that	is	being	read	to	detect	when	the	bait	email	(autofilled	by	the	built-in	password	manager)	was
sniffed.

3.	 Store	HTTP	request	and	response	data,	including	POST	payloads	to	detect	the	exfiltration	of	the	email
address	or	password.

For	both	JavaScript	(1,	2)	and	HTTP	instrumentation	(3)	we	store	JavaScript	stack	traces	at	the	time	of	the
function	call	or	the	HTTP	request.	We	then	parse	the	stack	trace	to	pin	down	the	initiators	of	an	HTTP
request	or	the	parties	responsible	for	inserting	or	accessing	a	form.

We	then	combine	the	instrumentation	data	to	select	scripts	that:

1.	 inject	an	HTML	element	containing	a	password	field	(recall	that	the	password	field	is	necessary	for
the	built-in	password	manager	to	kick	in)

2.	 read	the	email	address	from	the	input	field	automatically	filled	by	the	browser’s	login	manager
3.	 send	the	email	address,	or	a	hash	of	it,	over	HTTP

To	verify	the	findings	of	the	automated	experiments	we	manually	analyzed	sites	that	embed	the	two
scripts	that	match	these	conditions.	We	have	verified	that	the	forms	that	the	scripts	inserted	were	not
visible.	We	then	opened	accounts	on	the	sites	that	allow	registration	and	let	the	browser	store	the	login
information	(by	clicking	yes	to	the	dialog	in	Figure	1).	We	then	visited	another	page	on	the	site	and
verified	that	browser	password	manager	filled	the	invisible	form	injected	by	the	scripts.

Appendix	2	–	Code	Snippets

Code	snippets	from	OnAudience	(left)	and	Adthink	(right)	that	are	responsible	for	the	injection	of	invisible	login
forms.

FILED	UNDER:	PRIVACY	 TAGGED	WITH:	DATA	PRIVACY,	LOGIN	MANAGERS,	PASSWORD	MANAGERS,	PRIVACY,
WEB	PRIVACY,	WPM

Comments

https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsILoginManager
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mutation_events
https://freedom-to-tinker.com/category/privacy/
https://freedom-to-tinker.com/tag/data-privacy/
https://freedom-to-tinker.com/tag/login-managers/
https://freedom-to-tinker.com/tag/password-managers/
https://freedom-to-tinker.com/tag/privacy/
https://freedom-to-tinker.com/tag/web-privacy/
https://freedom-to-tinker.com/tag/wpm/


Eric	Mill	says:
December	27,	2017	at	5:48	pm

Anything	that	adds	usability	overhead	to	password	manager	auto-fill	feels	like	a
challenging	proposal.	(And	user	opt-out	is	always	a	relatively	ineffective	control	to	mitigate	systemic
issues	like	this.)

But	what	about	auto-applying	the	write-only	property	to	a	form	as	soon	as	it’s	been	auto-filled?	In
other	words,	once	the	browser	has	auto-filled	a	field,	the	field	is	considered	to	be	in	a	locked-down
state	with	no	further	DOM	access.	That	could	create	some	publisher	pain	for	those	who	are	using	JS	to
access	the	email	field	in	legit	ways	to	instrument	a	better	login	form,	but	that	would	be	putting	the
burden	on	a	small	class	of	websites,	and	not	on	users	using	auto-fill.

Reply

Gunes	Acar	says:
December	28,	2017	at	1:55	pm

That	sounds	like	an	interesting	idea	to	explore.	One	can	imagine	autofilled	credentials
are	not	needed	to	be	checked	for	password	strength	or	duplicate	usernames	–	common	cases	of
legit	script	access	to	login	forms.	Still,	one	needs	telemetry	or	web	measurement	data	to	back	this
up.

The	question	is	whether	browsers	will	ever	ship	write-only	elements	or	similar	protections	

Reply

Peter	says:
December	28,	2017	at	6:37	am

Here,	firefox	addon	Privacy	Badger	(PB)	immediately	flagged	rawgit.com	as	a	tracker	and
blocked	the	sniffer	script.	Probably	it	was	known	before?	Sadly,	it	is	not	really	an	option	to
recommend	PB:	users	do	enjoy	the	faster	page-loads,	but	when	a	site	breaks,	and	that	can	happen,
they	are	clueless	at	first,	and	then	annoyed	by	the	fact,	that	PB	cannot	read	their	minds	and	so	they
have	to	manage	something;	even	though	the	PB	interface	is	quite	easy	to	use,	IMO.

Reply

Gunes	Acar	says:
December	28,	2017	at	2:01	pm

Just	to	clarify,	we	use	RawGit	(rawgit.com)	to	serve	code	from	GitHub	with	the	right
content	type.

https://github.com/rgrove/rawgit/blob/master/FAQ.md

RawGit	is	not	responsible	for	any	of	the	code	that	they	seem	to	serve.	Privacy	Badger	must	have
flagged	it	perhaps	because	some	other	sites	embed	code	from	GitHub	through	rawgit.com.

Reply

Speak	Your	Mind

Name

Email

Post	Comment

Return	to	top	of	page Copyright	©	2017	·Education	Theme	on	Genesis	Framework	·	WordPress	·	Log	in

https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#comment-28870
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/?replytocom=28870#respond
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#comment-28874
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/?replytocom=28874#respond
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#comment-28872
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/?replytocom=28872#respond
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#comment-28875
https://github.com/rgrove/rawgit/blob/master/FAQ.md
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/?replytocom=28875#respond
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/#wrap
http://www.studiopress.com/themes/education
http://my.studiopress.com/themes/genesis/
http://wordpress.org/
https://freedom-to-tinker.com/wp-login.php

