
The Feasibility of Memory Encryption and
Authentication

Donald Owen, Jr.

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78705, USA

FastPath 2013: April 21, 2013

D. Owen 1/32



Outline

Introduction
Motivation
Background
Solution Characterization

Software
Hardware

Results
Conclusion

D. Owen 2/32



Motivation

Digital data is increasingly put on mobile devices and remote
servers. This data needs to be protected.

Security Problems

Health records
SSN
Private communication (emails)
Corporate documents
Crypto keys
... more

Security Solutions?

Disk encryption
Strong passwords
Hardened software

A major component left unprotected: DRAM.

D. Owen 3/32



Existing Protections Not Enough

Attacks abound
I Passive

I Bus Sniffing*

I Active
I Spoofing
I Splicing
I Replay
I Cold boot*

D. Owen 4/32



Existing Protections Not Enough

XboxTMhacked by Andrew “bunnie” Huang (MIT) using a bus
sniffer to read a secret key / decryption code.

Image Huang [1]

D. Owen 5/32



Existing Protections Not Enough

The “cold boot” attack, and variants thereof, exploit DRAM
remanence to extract data from RAM.

1. Interrupt power of a running system

2. Reboot into custom OS

3. Dump contents of DRAM to permanent storage

4. Mine dumped data for keys, files, fragments

5. Use recovered data to exploit, for example, encrypted disk

D. Owen 6/32



Outline

Introduction
Motivation
Background
Solution Characterization

Software
Hardware

Results
Conclusion

D. Owen 7/32



Memory Encryption & Authentication

What do we want?
C: Confidentiality
I: Integrity
A: Authentication

How do we get it?

Encryption
Hash/Tag/Signature
Tag/Signature

In short, encrypt and tag data to RAM; decrypt and authenticate
data from RAM.

D. Owen 8/32



Memory Encryption & Authentication

I Approach 1: Encrypt and tag each cache line. Store tags on
the chip. Verify on reading back from RAM.

I Problem: Storage space.

I Approach 2: Use a tree structure! Store tags in DRAM with
the root stored on the chip. Verify up the tree on reading
back.

I Problem: Speed.
I Variants: Use a dedicated tag cache on the chip. Verify until

you hit in the cache.

D. Owen 9/32



Memory Encryption & Authentication

Image Elbaz et al. [2]

D. Owen 10/32



Galois Counter Mode

Image Wikipedia [3]

D. Owen 11/32



Outline

Introduction
Motivation
Background
Solution Characterization

Software
Hardware

Results
Conclusion

D. Owen 12/32



Solution Characterization

Previous work assumed the existence of hardware adequate to the
task of encryption, decryption, tagging, and verifying fast enough
to meet performance demands.
We evaluated how feasible those assumptions are under different
implementation characteristics.

I Software
I Pure C on x86
I C + x86 Assembly
I C + x86 Assembly + ISA Extensions

I RTL on FPGA

I RTL on synthesized ASIC

D. Owen 13/32



Experimental Setup

Table : Experimental Setup

Processor Intel Core i7 2620M

OS
Fedora Linux 17

GNU/Linux 3.7 x86 64

Compiler GCC 4.7.2

FPGA Synthesis
Xilinx ISE v. 14.3

Kintex 7-325T

ASIC Synthesis
Synopsys Design Vision v. E2010-12

FreePDK 45 nm Library

D. Owen 14/32



Pure C Implementation

MiBench has an AES (Rijndael) benchmark. We modified this
benchmark to suit the implementation requirements.

Modifications

I Convert AES-CBC to AES-GCM.

I Convert File I/O to in-memory operations.

I Profile at cache line sizes

D. Owen 15/32



Pure C Implementation

Table : Cycles per Byte Measurements for Pure C Implementation of
AES-GCM

Buffer Size Encrypt Decrypt

32B 52.2 74.2

64B 37.8 50.4

128B 35.6 39.8

256B 28.3 35.8

512B 25.4 33.0

D. Owen 16/32



C + Assembly

We can do better!

I The same code in the pure C implementation has optional
Assembly routines.

I OpenSSL uses Assembly optimizations.

I Modern x86 processors have ISA extensions for AES and
GCM.

D. Owen 17/32



C + Assembly

Table : Cycles per Byte Measurements for Assembly-Optimized
AES-GCM (64B Buffer)

Method Encrypt Decrypt

Pure C 37.8 50.4

C + Opt. 22 30

OpenSSL ˜25 ˜25

ISA Extensions [4] 3.5 ˜3.5

D. Owen 18/32



RTL Module

Most previous work assumes the existence of hardware modules.
We adapted an open-source AES-GCM module to be suitable for
both FPGA and ASIC synthesis.

D. Owen 19/32



RTL Module Characteristics - FPGA

Table : Open-Source vs. Representative Commercial AES-GCM RTL
Core on Kintex 7 FPGA

Metric Open Source Commercial

Startup 19 clocks 0 clocks

16B Enc/Dec 22 clocks 12 clocks

16B Tag(Hash) 17 clocks 12 clocks

64B Cache Line + Tag 123 clocks 60 clocks

Freq. Max 212 MHz 256 MHz

Logic Slices ˜800 ˜1000

Block RAMs 8 12

D. Owen 20/32



FPGA RTL Synthesis Results

Linear Fit: 193mW /instance.

D. Owen 21/32



RTL Module Characteristics - ASIC

FreePDK 45 Implementation

I Freq Max: 250 MHz

I Area: 89k µm2

I Power: 12 mW

D. Owen 22/32



ASIC RTL Synthesis Results

Linear Fit: 11.05mW /instance.

D. Owen 23/32



Outline

Introduction
Motivation
Background
Solution Characterization

Software
Hardware

Results
Conclusion

D. Owen 24/32



Results - Summary

Table : Summary of Different Implementation Methods

ASIC FPGA x86 x86 x86

C Assembly ISA Ext.

Clock (Hz) 225 M 200 M 2.7 G 2.7 G 2.7 G
Cycles
Byte

1.9 1.9 44 22 3.5

Throughput 936.6 Mbps 882.5 Mbps 490.9 Mbps 981.8 Mbps 6.17 Gbps

Typ. Power 11.05 mW 192.9 mW ˜35 W ˜35 W ˜35 W

Typ. Area 74.1kµm2 - - - -

Mbps/mW 84.7 4.57 1.40 ∗ 10−2 2.81 ∗ 10−2 1.76 ∗ 10−1

D. Owen 25/32



Implementation Feasibility

Table : Peak Memory Bandwidth of Several Modern Systems

Nexus 7 Nexus 10 iPhone 5 iPad 3 Intel i7 AMD FX

BW (GB
s
) 5.3 12.8 8.5 12.8 25.6 21

D. Owen 26/32



Implementation Feasibility

Table : Number of Instances to Meet Peak BW

C C + Opt. C + ISA FPGA ASIC

Intel i7 590 210 34 230 220

220 ASIC Modules ≈ 16 mm2 at 45 nm.
220 ASIC Modules ≈ 2.4 W at 45 nm.

D. Owen 27/32



Outline

Introduction
Motivation
Background
Solution Characterization

Software
Hardware

Results
Conclusion

D. Owen 28/32



Summary

What Have We Shown?

I Software solutions require too much power.

I Software solutions require too much area.

I Software solutions are too slow.

I FPGA solution may be useful for existing designs.

I ASIC solution may be feasible for implementation in a real
system.

D. Owen 29/32



Thank you!

Questions?

D. Owen 30/32



Backup Slides

Backup Slides

D. Owen 31/32



References

[Online]. Available: http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html#ldt

R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and L. Torres, “Hardware mechanisms for

memory authentication: A survey of existing techniques and engines,” in Transactions on Computational
Science IV, M. L. Gavrilova, C. J. Tan, and E. D. Moreno, Eds. Berlin, Heidelberg: Springer-Verlag, 2009,
ch. Hardware Mechanisms for Memory Authentication: A Survey of Existing Techniques and Engines, pp.
1–22. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-01004-0 1

[Online]. Available: https://en.wikipedia.org/wiki/Galois/Counter Mode

S. Gueron and M. E. Kounavis, “Intel R© carry-less multiplication instruction and its usage for computing

the gcm mode,” White Paper, 2010.

D. Owen 32/32

http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html#ldt
http://dx.doi.org/10.1007/978-3-642-01004-0_1
https://en.wikipedia.org/wiki/Galois/Counter_Mode

	Introduction
	Motivation
	Background
	Solution Characterization
	Software
	Hardware

	Results
	Conclusion

