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Motivation

Digital data is increasingly put on mobile devices and remote
servers. This data needs to be protected.

Security Problems

Health records
SSN
Private communication (emails)
Corporate documents
Crypto keys
... more

Security Solutions?

Disk encryption
Strong passwords
Hardened software

A major component left unprotected: DRAM.
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Existing Protections Not Enough

Attacks abound
I Passive

I Bus Sniffing*

I Active
I Spoofing
I Splicing
I Replay
I Cold boot*
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Existing Protections Not Enough

XboxTMhacked by Andrew “bunnie” Huang (MIT) using a bus
sniffer to read a secret key / decryption code.

Image Huang [1]
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Existing Protections Not Enough

The “cold boot” attack, and variants thereof, exploit DRAM
remanence to extract data from RAM.

1. Interrupt power of a running system

2. Reboot into custom OS

3. Dump contents of DRAM to permanent storage

4. Mine dumped data for keys, files, fragments

5. Use recovered data to exploit, for example, encrypted disk
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Memory Encryption & Authentication

What do we want?
C: Confidentiality
I: Integrity
A: Authentication

How do we get it?

Encryption
Hash/Tag/Signature
Tag/Signature

In short, encrypt and tag data to RAM; decrypt and authenticate
data from RAM.
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Memory Encryption & Authentication

I Approach 1: Encrypt and tag each cache line. Store tags on
the chip. Verify on reading back from RAM.

I Problem: Storage space.

I Approach 2: Use a tree structure! Store tags in DRAM with
the root stored on the chip. Verify up the tree on reading
back.

I Problem: Speed.
I Variants: Use a dedicated tag cache on the chip. Verify until

you hit in the cache.
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Memory Encryption & Authentication

Image Elbaz et al. [2]
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Galois Counter Mode

Image Wikipedia [3]
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Solution Characterization

Previous work assumed the existence of hardware adequate to the
task of encryption, decryption, tagging, and verifying fast enough
to meet performance demands.
We evaluated how feasible those assumptions are under different
implementation characteristics.

I Software
I Pure C on x86
I C + x86 Assembly
I C + x86 Assembly + ISA Extensions

I RTL on FPGA

I RTL on synthesized ASIC
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Experimental Setup

Table : Experimental Setup

Processor Intel Core i7 2620M

OS
Fedora Linux 17

GNU/Linux 3.7 x86 64

Compiler GCC 4.7.2

FPGA Synthesis
Xilinx ISE v. 14.3

Kintex 7-325T

ASIC Synthesis
Synopsys Design Vision v. E2010-12

FreePDK 45 nm Library
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Pure C Implementation

MiBench has an AES (Rijndael) benchmark. We modified this
benchmark to suit the implementation requirements.

Modifications

I Convert AES-CBC to AES-GCM.

I Convert File I/O to in-memory operations.

I Profile at cache line sizes
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Pure C Implementation

Table : Cycles per Byte Measurements for Pure C Implementation of
AES-GCM

Buffer Size Encrypt Decrypt

32B 52.2 74.2

64B 37.8 50.4

128B 35.6 39.8

256B 28.3 35.8

512B 25.4 33.0
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C + Assembly

We can do better!

I The same code in the pure C implementation has optional
Assembly routines.

I OpenSSL uses Assembly optimizations.

I Modern x86 processors have ISA extensions for AES and
GCM.
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C + Assembly

Table : Cycles per Byte Measurements for Assembly-Optimized
AES-GCM (64B Buffer)

Method Encrypt Decrypt

Pure C 37.8 50.4

C + Opt. 22 30

OpenSSL ˜25 ˜25

ISA Extensions [4] 3.5 ˜3.5
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RTL Module

Most previous work assumes the existence of hardware modules.
We adapted an open-source AES-GCM module to be suitable for
both FPGA and ASIC synthesis.
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RTL Module Characteristics - FPGA

Table : Open-Source vs. Representative Commercial AES-GCM RTL
Core on Kintex 7 FPGA

Metric Open Source Commercial

Startup 19 clocks 0 clocks

16B Enc/Dec 22 clocks 12 clocks

16B Tag(Hash) 17 clocks 12 clocks

64B Cache Line + Tag 123 clocks 60 clocks

Freq. Max 212 MHz 256 MHz

Logic Slices ˜800 ˜1000

Block RAMs 8 12
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FPGA RTL Synthesis Results

Linear Fit: 193mW /instance.
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RTL Module Characteristics - ASIC

FreePDK 45 Implementation

I Freq Max: 250 MHz

I Area: 89k µm2

I Power: 12 mW
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ASIC RTL Synthesis Results

Linear Fit: 11.05mW /instance.
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Results - Summary

Table : Summary of Different Implementation Methods

ASIC FPGA x86 x86 x86

C Assembly ISA Ext.

Clock (Hz) 225 M 200 M 2.7 G 2.7 G 2.7 G
Cycles
Byte

1.9 1.9 44 22 3.5

Throughput 936.6 Mbps 882.5 Mbps 490.9 Mbps 981.8 Mbps 6.17 Gbps

Typ. Power 11.05 mW 192.9 mW ˜35 W ˜35 W ˜35 W

Typ. Area 74.1kµm2 - - - -

Mbps/mW 84.7 4.57 1.40 ∗ 10−2 2.81 ∗ 10−2 1.76 ∗ 10−1
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Implementation Feasibility

Table : Peak Memory Bandwidth of Several Modern Systems

Nexus 7 Nexus 10 iPhone 5 iPad 3 Intel i7 AMD FX

BW (GB
s
) 5.3 12.8 8.5 12.8 25.6 21
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Implementation Feasibility

Table : Number of Instances to Meet Peak BW

C C + Opt. C + ISA FPGA ASIC

Intel i7 590 210 34 230 220

220 ASIC Modules ≈ 16 mm2 at 45 nm.
220 ASIC Modules ≈ 2.4 W at 45 nm.
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Summary

What Have We Shown?

I Software solutions require too much power.

I Software solutions require too much area.

I Software solutions are too slow.

I FPGA solution may be useful for existing designs.

I ASIC solution may be feasible for implementation in a real
system.
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Thank you!

Questions?
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Backup Slides

Backup Slides
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