
Mike	Hearn
Sep	23 · 12	min	read

Follow

It’s	time	to	kill	the	web
omething	is	going	on.	The	people	are	unhappy.	The
spectre	of	civil	unrest	stalks	our	programming

communities.

For	the	first	time,	a	meaningful	number	of	developers	are
openly	questioning	the	web	platform.	Here’s	a	representative
article	and	discussion.	Here’s	another.	Yet	another.	I	could	list
more	but	if	you’re	interested	enough	in	programming	to	be
reading	this	you’ve	already	read	at	least	one	hilarious	rant
this	year	about	the	state	of	modern	web	development.	This	is
not	one	of	those	articles.	I	can’t	do	a	better	job	of	mocking	the
status	quo	than	the	poor	people	who	have	to	live	it	every	day.
This	is	a	different	kind	of	article.

I	want	to	think	about	how	one	might	go	about	making	a
competitor	to	the	web	so	good	that	it	eventually	replaces	and
subsumes	it,	at	least	for	the	purpose	of	writing	apps.	The	web
has	issues	as	a	way	of	distributing	documents	too,	but	not
severe	enough	to	worry	about.

This	is	the	first	of	two	articles.	In	part	one	I’m	going	to	review
the	deep,	unfixable	problems	the	web	platform	has:	I	want	to
convince	you	that	nuking	it	from	orbit	is	the	only	way	to	go.
After	all,	you	can’t	fix	problems	if	you	don’t	analyse	them	first.
I’ll	also	briefly	examine	why	it	is	now	politically	acceptable	to
talk	about	these	issues,	although	they	are	not	actually	new.

In	part	2	I’ll	propose	a	new	app	platform	that	is	buildable	by	a
small	group	in	a	reasonable	amount	of	time,	and	which
(IMHO)	should	be	much	better	than	what	we	have	today.	Not
everyone	will	agree	with	this	last	part,	of	course.	Agreeing	on
problems	is	always	easier	than	agreeing	on	solutions.

Part	1.	Here	we	go.

S

. . .

Why	the	web	must	die

That’s	you,	frontend	hacker



Web	apps.	What	are	they	like,	eh?	I	could	list	all	kinds	of
problems	with	them	but	let’s	pick	just	two.

Web	development	is	slowly	reinventing	the	1990's.

Web	apps	are	impossible	to	secure.

Here’s	a	good	blog	post	on	Flux,	the	latest	hot	web	framework
from	Facebook.	The	author	points	out	that	Flux	has	recreated
the	programming	model	used	by	Windows	1.0,	released	in
1985.	Microsoft	used	this	model	because	it	was	appropriate
for	very	slow	computers,	but	it	was	awkward	to	develop	for
and	so	within	less	than	a	decade	there	was	an	ecosystem	of
products	(like	OWL)	that	abstracted	away	the	underlying
WndProc	messaging	system.

One	of	the	reasons	React/Flux	works	the	way	it	does	is	that
web	rendering	engines	are	very	slow.	This	is	true	even	though
the	end	result	the	user	actually	sees	is	only	a	little	bit	fancier
than	what	a	Windows	user	might	have	seen	20	years	ago:

Sure,	the	screen	resolution	is	higher	these	days.	The	shade	of
grey	we	like	has	changed.	But	the	UI	you	see	above	is	rather
similar	in	complexity	to	the	UI	you	see	below:

Even	the	icon	fashions	are	the	same!	Windows	98	introduced
a	new	trend	of	flat,	greyscale	icons	with	lots	of	padding	to	a
platform	where	the	previous	style	had	been	colourful,	tightly
packed	pixel	art.

But	Office	2000	was	happy	with	a	75	Mhz	CPU	and	32mb	of
RAM,	whereas	the	Google	Docs	shown	above	is	using	a	2.5Ghz
CPU	and	almost	exactly	10x	more	RAM.

1.

2.

Windows	98



If	we	had	gained	a	10x	increase	in	productivity	or	10x	in
features	perhaps	that’d	be	excusable,	but	we	haven’t.
Developer	platforms	in	1995	were	expected	to	have	all	of	the
following,	just	as	the	price	of	entry:

A	visual	UI	designer	with	layout	constraints	and	data
binding.

Sophisticated	support	for	multi-language	software
components.	You	could	mix	statically	typed	native	code
and	scripting	languages.

Output	binaries	so	efficient	they	could	run	in	a	few
megabytes	of	RAM.

Support	for	graphing	of	data,	theming,	3D	graphics,
socket	programming,	interactive	debugging	…

Many	of	these	features	have	only	been	brought	to	the	web
platform	in	the	past	few	years,	and	often	in	rather	sketchy
ways.	Web	apps	can’t	use	real	sockets,	so	servers	have	to	be
changed	to	support	“web	sockets”	instead.	Things	as	basic	as
UI	components	are	a	disaster	zone,	there’s	no	Web	IDE	worth
talking	about	and	as	for	mixing	different	programming
languages	…	well,	you	can	transpile	to	JavaScript.	Sometimes.

One	reason	developers	like	writing	web	apps	is	that	user
expectations	on	the	web	are	extremely	low.	Apps	for	Windows
95	were	expected	to	have	icons,	drag	and	drop,	undo,	file
associations,	consistent	keyboard	shortcuts,	do	useful	things
in	the	background	…	and	even	work	offline!	But	that	was	just
basic	apps.	Really	impressive	software	would	be	embeddable
inside	Office	documents,	or	extend	the	Explorer,	or	allow	itself
to	be	extended	with	arbitrary	plugins	that	were	unknown	to
the	original	developer.	Web	apps	usually	do	none	of	these
things.

All	this	adds	up.	I	feel	a	lot	more	productive	when	I’m	writing
desktop	apps	(even	including	the	various	“taxes”	you	are
expected	to	pay,	like	making	icons	for	your	file	types).	I	prefer
using	them	too.	And	I	know	from	discussions	with	others	that
I’m	not	alone	in	that.

I	think	the	web	is	like	this	because	whilst	HTML	as	a
document	platform	started	out	with	some	kind	of	coherent
design	philosophy	and	toolset,	HTML	as	an	app	platform	was
bolted	on	later	and	never	did.	So	basic	things	like	file
associations	don’t	exist,	yet	HTML5	has	peer	to	peer	video
streaming,	because	Google	wanted	to	make	Hangouts	and
Google’s	priorities	dictate	what	gets	added.	To	avoid	this
problem	you	need	a	platform	that	was	designed	with	apps	in
mind	from	the	start,	and	then	maybe	add	documents	on	top,
rather	than	the	other	way	around.

•

•

•

•

. . .

Web	apps	are	impossible
to	secure
At	the	end	of	the	1990’s	a	horrible	realisation	was	dawning	on
the	software	industry:	security	bugs	in	C/C++	programs
weren’t	rare	one-off	mistakes	that	could	be	addressed	with
ad-hoc	processes.	They	were	everywhere.	People	began	to
realise	that	if	a	piece	of	C/C++	was	exposed	to	the	internet,
exploits	would	follow.



We	can	see	how	innocent	the	world	was	back	then	by	reading
the	SANS	report	on	Code	Red	from	2001:

“Representatives	from	Microsoft	and
United	States	security	agencies	held	a
press	conference	instructing	users	to
download	the	patch	available	from
Microsoft	and	indicated	it	as	“a	civic
duty”	to	download	this	patch.	CNN	and
other	news	outlets	following	the	spread	of
Code	Red	urged	users	to	patch	their
systems.”

Windows	did	have	automatic	updates,	but	if	I	recall	correctly
they	were	not	switched	on	by	default.	The	idea	that	software
might	change	without	the	user’s	permission	was	something	of
a	taboo.

The	industry	began	to	change,	but	only	with	lots	of	screaming
and	denial.	Back	then	it	was	conventional	wisdom	amongst
Linux	and	Mac	users	that	this	was	somehow	a	problem
specific	to	Microsoft	…	that	their	systems	were	built	by	a
superior	breed	of	programmer.	So	whilst	Microsoft	accepted
that	it	faced	an	existential	crisis	and	introduced	the	“secure
development	lifecycle”	(a	huge	retraining	and	process
program)	its	competitors	did	very	little.	Redmond	added	a
firewall	to	Windows	XP	and	introduced	code	signing
certificates.	Mobile	code	became	restricted.	As	it	became
apparent	that	security	bugs	were	bottomless	“Patch
Tuesday”	was	introduced.	Clever	hackers	kept	discovering
that	bug	types	once	considered	benign	were	nonetheless
exploitable,	and	exploit	mitigations	once	considered	strong
could	be	worked	around.	The	Mac	and	Linux	communities
slowly	woke	up	to	the	fact	that	they	were	not	magically
immune	to	viruses	and	exploits.

The	final	turning	point	came	in	2008	when	Google	launched
Chrome,	a	project	notable	for	the	fact	that	it	had	put	huge
effort	into	a	complex	but	completely	invisible	renderer
sandbox.	In	other	words,	the	industry's	best	engineers	were
openly	admitting	they	could	never	write	secure	C++	no
matter	how	hard	they	tried.	This	belief	and	design	has
become	a	de-facto	standard.

Now	it’s	the	web’s	turn
Unfortunately,	the	web	has	not	led	us	to	the	promised	land	of
trustworthy	apps.	Whilst	web	apps	are	kind	of	sandboxed

First	signs	of	a	Blaster	infection



from	the	host	OS,	and	that’s	good,	the	apps	themselves	are
hardly	more	robust	than	Windows	code	was	circa	2001.
Instead	of	fixing	our	legacy	problems	for	good	the	web	just
replaced	one	kind	of	buffer	overflow	with	another.	Where
desktop	apps	have	exploit	categories	like	“double	free”,	“stack
smash”,	“use	after	free”	etc,	web	apps	fix	those	but	then	re-
introduce	their	own	very	similar	mistakes:	SQL	injection,	XSS,
XSRF,	header	injection,	MIME	confusion,	and	so	on.

This	leads	to	a	simple	thesis:

I	put	it	to	you	that	it’s	impossible	to	write	secure	web
apps.

Let’s	get	the	pedantry	out	of	the	way.	I’m	not	talking	about
literally	all	web	apps.	Yes	you	can	make	a	secure	HTML	Hello
World,	good	for	you.

I’m	talking	about	actual	web	apps	of	decent	size,	written
under	realistic	conditions,	and	it’s	not	a	claim	I	make	lightly.
It’s	a	belief	I	developed	during	my	eight	years	at	Google,
where	I	watched	the	best	and	brightest	web	developers	ship
exploitable	software	again	and	again.

The	Google	security	team	is	one	of	the	world’s	best,	perhaps
the	best,	and	they	put	together	this	helpful	guide	to	some	of
the	top	mistakes	people	make	as	part	of	their	internal	training
program.	Here’s	their	advice	on	securely	sending	data	to	the
browser	for	display:

To	fix,	there	are	several	changes	you	can	make.	Any	one	of
these	changes	will	prevent	currently	possible	attacks,	but	if
you	add	several	layers	of	protection	(“defense	in	depth”)	you
protect	against	the	possibility	that	you	get	one	of	the
protections	wrong	and	also	against	future	browser
vulnerabilities.	First,	use	an	XSRF	token	as	discussed	earlier
to	make	sure	that	JSON	results	containing	confidential	data
are	only	returned	to	your	own	pages.	Second,	your	JSON
response	pages	should	only	support	 POST requests,	which
prevents	the	script	from	being	loaded	via	a	script	tag.	Third,
you	should	make	sure	that	the	script	is	not	executable.	The
standard	way	of	doing	this	is	to	append	some	non-executable
prefix	to	it,	like	 ])}while(1);</x> .	A	script	running	in	the	same
domain	can	read	the	contents	of	the	response	and	strip	out
the	prefix,	but	scripts	running	in	other	domains	can't.

NOTE:	Making	the	script	not	executable	is	more	subtle	than	it
seems.	It’s	possible	that	what	makes	a	script	executable	may
change	in	the	future	if	new	scripting	features	or	languages
are	introduced.	Some	people	suggest	that	you	can	protect	the
script	by	making	it	a	comment	by	surrounding	it	with	 /* 	and
*/ ,	but	that's	not	as	simple	as	it	might	seem.	(Hint:	what	if
someone	included	 */ 	in	one	of	their	snippets?)

Reading	this	ridiculous	pile	of	witchcraft	and	folklore	always
makes	me	laugh.	It	should	be	a	joke,	but	it’s	actually	basic
stuff	that	every	web	developer	at	Google	is	expected	to	know,
just	to	put	some	data	on	the	screen.

Actually	you	can	do	all	of	that	and	it	still	doesn’t	work.	The
HEIST	attack	allows	data	to	be	stolen	from	a	web	app	that
implements	even	all	the	above	mitigations	and	it	doesn’t
require	any	mistakes.	It	exploits	unfixable	design	flaws	in	the
web	platform	itself.	Game	over.



Not	really!	It	gets	worse!	Protecting	REST/JSON	endpoints	is
only	one	of	many	different	security	problems	a	modern	web
developer	must	understand.	There	are	dozens	more	(here’s
an	interesting	example	and	another	fun	one).

My	experience	has	been	that	attempting	to	hire	a	web
developer	that	has	even	heard	of	all	these	landmines	always
ends	in	failure,	let	alone	hiring	one	who	can	reliably	avoid
them.	Hence	my	conclusion:	if	you	can’t	hire	web	devs	that
understand	how	to	write	secure	web	apps	then	writing	secure
web	apps	is	impossible.

The	core	problem
Virtually	all	security	problems	on	the	web	come	from	just	a
few	core	design	issues:

Buffers	that	don’t	specify	their	length

Protocols	designed	for	documents	not	apps

The	same	origin	policy

Losing	track	of	the	size	of	your	buffers	is	a	classic	source	of
vulnerabilities	in	C	programs	and	the	web	has	exactly	the
same	problem:	XSS	and	SQL	injection	exploits	are	all	based
on	creating	confusion	about	where	a	code	buffer	starts	and	a
data	buffer	ends.	The	web	is	utterly	dependent	on	textual
protocols	and	formats,	so	buffers	invariably	must	be	parsed	to
discover	their	length.	This	opens	up	a	universe	of	escaping,
substitution	and	other	issues	that	didn’t	need	to	exist.

The	fix:	All	buffers	should	be	length	prefixed	from	database,
to	frontend	server,	to	user	interface.	There	should	never	be	a
need	to	scan	something	for	magic	characters	to	determine
where	it	ends.	Note	that	this	requires	binary	protocols,
formats	and	UI	logic	throughout	the	entire	stack.

HTTP	and	HTML	were	designed	for	documents.	When	Egor
Homakov	was	able	to	break	Authy’s	2-factor	authentication
product	by	simply	typing	“../sms”	inside	the	SMS	code	input
field,	he	succeeded	because	like	all	web	services	Authy	is	built
on	a	stack	designed	for	hypertext,	not	software.	Path
traversal	is	helpful	if	what	you’re	accessing	is	an	actual	set	of
directories	with	HTML	files	in	them,	as	Sir	Tim	intended.	If
you’re	presenting	a	programming	API	as	“documents”	then
path	traversal	can	be	fatal.

REST	was	bad	enough	when	it	returned	XML,	but	nowadays
XML	is	unfashionable	and	instead	the	web	uses	JSON,	a
format	so	badly	designed	it	actually	has	an	entire	section	in
its	wiki	page	just	about	security	issues.

The	fix:	Let’s	stop	pretending	REST	is	a	good	idea.	REST	is	a
bad	idea	that	twists	HTTP	into	something	it’s	not,	only	to
work	around	the	limits	of	the	browser,	another	tool	twisted
into	being	something	it	was	never	meant	to	be.	This	can	only
end	in	tears.	Taking	into	account	the	previous	point,
client/server	communication	should	be	using	binary	protocols
that	are	designed	specifically	for	the	RPC	use	case.

The	same	origin	policy	is	another	developer	experience
straight	out	of	a	Stephen	King	novel.	Quoth	the	wiki:

The	behavior	of	same-origin	checks	and	related	mechanisms
is	not	well-defined	in	a	number	of	corner	cases	…	this

•

•

•



historically	caused	a	fair	number	of	security	problems.

In	addition,	many	legacy	cross-domain	operations	predating
JavaScript	are	not	subjected	to	same-origin	checks.

Lastly,	certain	types	of	attacks,	such	as	DNS	rebinding	or
server-side	proxies,	permit	the	host	name	check	to	be	partly
subverted.

The	SOP	is	a	result	of	Netscape	bolting	code	onto	a	document
format.	It	doesn’t	actually	make	any	sense	and	you	wouldn’t
design	an	app	platform	that	way	if	you	had	more	than	10	days
to	do	it	in.	Still,	we	can’t	really	blame	them	as	Netscape	was	a
startup	working	under	intense	time	pressure,	and	as	we
already	covered	above,	back	then	nobody	was	thinking	much
about	security	anyway.	For	a	10	day	coding	marathon	it	could
have	been	worse.

Regardless	of	our	sympathy	it’s	the	SOP	that	lies	at	the	heart
of	the	HEIST	attack,	and	HEIST	appears	to	break	almost	all
real	web	apps	in	ways	that	probably	can’t	be	fixed,	at	least	not
without	breaking	backwards	compatibility.	That’s	one	more
reason	writing	secure	web	apps	is	impossible.

The	fix:	apps	need	a	clear	identity	and	shouldn’t	be	sharing
security	tokens	with	each	other	by	default.	If	you	don’t	have
permission	to	access	a	server	you	shouldn’t	be	able	to	send	it
messages.	Every	platform	except	the	web	gets	this	right.

There	are	a	bunch	of	other	design	problems	in	the	web	that
make	it	hard	to	secure,	but	the	above	examples	are	hopefully
enough	to	convince.

. . .

Conclusion
HTML	5	is	a	plague	on	our	industry.	Whilst	it	does	a	few
things	well	those	advantages	can	be	easily	matched	by	other
app	platforms,	yet	virtually	none	of	the	web’s	core	design
flaws	can	be	fixed.	This	is	why	the	web	lost	on	mobile:	when
presented	with	competing	platforms	that	were	actually
designed	instead	of	organically	grown,	developers	almost
universally	chose	to	go	native.	But	we	lack	anything	good
outside	of	mobile.	We	desperately	need	a	way	of	conveniently
distributing	sandboxed,	secure,	auto-updating	apps	to
desktops	and	laptops.

Ten	years	ago	I’d	have	been	crucified	for	writing	this	article.	I
expect	some	grumbling	now	too,	but	in	recent	times	it’s
become	socially	acceptable	to	criticise	the	web.	Way	back
then,	the	web	was	locked	in	a	competition	with	other
proprietary	platforms	like	Flash,	Shockwave	and	Java.	The
web	was	open	but	it’s	survival	as	a	competitive	platform
wasn’t	clear.	Its	eventual	resurgence	and	victory	is	a	story
calculated	to	push	all	our	emotional	buttons:	open	is	better
than	closed,	collective	ownership	is	better	than	proprietary,
David	can	beat	Goliath	etc.	Many	programmers	developed	a
tribal	loyalty	to	it.	Prefixing	anything	with	“Web”	made	it
instantly	hip.	Suggesting	that	Macromedia	Flash	might
actually	be	good	would	get	your	geek	card	revoked.



But	times	change.	The	web	has	grown	so	fat	that	calling	it
open	is	now	pretty	meaningless:	you	have	no	chance	of
implementing	HTML5	unless	you	have	a	few	billion	dollars
you’d	like	to	burn.	The	W3C	didn’t	meet	its	users	needs	and	is
now	irrelevant,	so	unless	you	work	at	Google	or	Microsoft	you
can’t	meaningfully	impact	the	technical	direction	of	the	web.
Some	of	the	competing	platforms	that	were	once	closed
opened	up.	And	the	JavaScript	ecosystem	is	imploding	under
the	weight	of	its	own	pointless	churn.

It’s	time	to	go	back	to	the	drawing	board.	Next	time:	how	we
can	do	that.


