
SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 1

Forensic Data Recovery from Flash Memory
Marcel Breeuwsma, Martien de Jongh, Coert Klaver, Ronald van der Knijff and Mark Roeloffs

Abstract—Current forensic tools for examination of embedded
systems like mobile phones and PDA’s mostly perform data
extraction on a logical level and do not consider the type of
storage media during data analysis. This paper suggests a low
level approach for the forensic examination of flash memories and
describes three low-level data acquisition methods for making full
memory copies of flash memory devices. Results are presented of
a file system study in which USB memory sticks from 45 different
make and models were used. For different mobile phones is shown
how full memory copies of their flash memories can be made
and which steps are needed to translate the extracted data into
a format that can be understood by common forensic media
analysis tools. Artifacts, caused by flash specific operations like
block erasing and wear leveling, are discussed and directions are
given for enhanced data recovery and analysis on data originating
from flash memory.

Index Terms—embedded systems, flash memory, physical anal-
ysis, hex analysis, forensic, mobile phones, USB sticks.

I. INTRODUCTION

THE evolution in consumer electronics has caused an
exponential growth in the amount of mobile digital data.

The majority of mobile phones nowadays has a build in camera
and is able to record, store, play and forward picture, audio,
and video data. Some countries probably have more memory
sticks than inhabitants. A lot of this data is related to human
behavior and might become subject of a forensic investigation.

Flash memory is currently the most dominant non-volatile
solid-state storage technology in consumer electronic products.
An increasing number of embedded systems use high level file
systems comparable to the file systems used on personal com-
puters. Current forensic tools for examination of embedded
systems like mobile phones or PDAs mostly perform logical
data acquisition. With logical data acquisition it’s often not
possible to recover all data from a storage medium. Deleted
data for example, but sometimes also other data which is not
directly relevant from a user standpoint, can not be acquired
and potentially interesting information might be missed. For
this reason data acquisition is wanted at the lowest layer where
evidence can be expected. For hard disk based storage media
it’s common to copy all bytes from the original storage device
to a destination storage device and then do the analysis on this
copy. The same procedure is desired for embedded systems
with solid-state storage media.

This paper suggests a low level approach for the forensic
examination of flash memory. In chapter II the most important
technology basics of flash memories are explained. Chapter III
describes three low-level data acquisition methods for flash
memories, first with so called flasher tools, then by usage of
an access port commonly used for testing and debugging and
finally with a semi-invasive method where the flash memory
chips are physically removed from the printed circuit board.
Chapter IV explains methods to translate the extracted data

to file system level where common forensic media analysis
tools can be used for further analysis. Experimental results
are given on data originating from USB sticks and mobile
phones. Chapter V explains some artifacts characteristic to
data originating from flash file systems.

II. FLASH TECHNOLOGY

Flash memory is a type of non-volatile memory that can be
electrically erased and reprogrammed. Flash memory comes
in two flavors, NOR1 flash and NAND2 flash, named after
the basic logical structures of these chips. Contrary to NAND
flash, NOR flash can be read byte by byte in constant time
which is the reason why it is often used when the primary goal
of the flash memory is to hold and execute firmware3, while
parts of NOR flash that are not occupied by firmware can be
used for user data storage. Most mobile media, like USB flash
disks, or multimedia centred devices like digital camera’s and
camera phones, use NAND flash memory to create compact
mobile data storage. This chapter explains the basics of flash
technology first on the physical level and then from a logical
perspective. An introduction to NAND flash memory can be
found in [5], more in depth information can be found in [9].

A. Physical Characteristics
The physical mechanism to store data in flash memory is

based on storing electrical charge into a floating gate of a
transistor. This charge can be stored for extended periods of
time without using an external power supply but gradually
it will leak away caused by physical effects. Data retention
specifications for current flash memory are between 10 and
100 years.

Flash memory can be written byte for byte, like EEPROM4,
but it has to be erased in blocks at a time before it can be
re-written. Erasing results in a memory block that is filled
completely with 1’s. In NAND flash, erase blocks are divided
further into pages, for example 32 or 64 per erase block. A
page is usually a multiple of 512 bytes in size, to emulate
512 byte sector size commonly found in file systems on
magnetic media. Additionally, a page has a number of so
called ’spare area’ bytes, generally used for storing meta data.
Some flash disk drivers use the concept of zones5. A zone is a
group of blocks, usually 256 to 1024. Contrary to blocks and
pages, a zone is just a logical concept, there is no physical
representation. See figure 1 for a dissection of NAND flash
memory.

1NOR flash memory was introduced in 1988 by Intel.
2NAND flash memory was introduced in 1989 by Toshiba.
3Firmware is software that is embedded in a hardware device (like a mobile

phone or a PDA).
4Electrically Erasable Programmable Read Only Memory.
5The term partition is sometimes also used to indicate sections of flash

memory.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 2

Fig. 1. Dissection of NAND flash memory

TABLE I
EXAMPLE SPARE AREA SIZES FOR DIFFERENT PAGE SIZES (IN BYTES)

Page Size Spare area size Total page size Block size
256 8 264 8448
512 16 528 16896

2048 64 2112 135168

Each page has an area of bytes, often referred to as the
redundant area or spare area. Table I shows spare area sizes
for different page sizes. The spare area can contain information
on the status of the block or the page. For instance when a
block turns bad, it will be marked here. The spare area can also
contain ECC6 data. ECC data is used to detect errors in a page.
With the ECC data an error of one bit can be corrected, after
which the block will be marked bad. Finally the spare area
can contain information necessary for the physical to logical
address mapping

Erasing a block causes a block to deteriorate. Blocks can
be erased between 104 and 106 times before bits in this block
start to become inerasable (stay ‘0’). Such a block is then
called a ‘bad block’. NAND flash usually already has bad
blocks when leaving the factory. In datasheets of NAND flash
chips, the guaranteed minimal number of good blocks when
first shipped is specified. Typically at least 98% of the blocks
are guaranteed to be in working order. Initial bad blocks are
marked as such in the spare area.

In order to spread the erasing of blocks as evenly as possible
over the full range of physical blocks, flash memory vendors
have developed so called ‘wear levelling’ algorithms [6] [7].
The idea is that spreading the wear, caused by erasing a
block, as much as possible over the whole capacity of the
flash memory will increase the overall lifetime of the memory.
For manufacturers of memory devices, the wear levelling
algorithm can be very sensitive intellectual property, so any
inquiries that look like questions about the wear levelling
algorithm will often be left unanswered.

However, for the reconstruction of data in a flash memory,
it is not necessary to know how the wear levelling created
the physical image that is copied of a flash chip. All one
needs to know is how to recreate the right order of physical
blocks in order to create a logical copy of the higher level file
system. In other words: wear leveling can be seen as a dynamic
process that rearranges pages and/or blocks continuously in
order to extend flash lifetime. When trying to interpret a static

6Error Checking and Correcting.

Fig. 2. Typical electrical interface of a NAND flash chip

TABLE II
PIN NAMES OF A NAND FLASH CHIP

Pin Description
CLE COMMAND LATCH ENABLE
ALE ADDRESS LATCH ENABLE
CE CHIP ENABLE
RE READ ENABLE
WE WRITE ENABLE
WP WRITE PROTECT
R/B READY/BUSY OUTPUT
PRE POWER-ON READ ENABLE
Vcc POWER
Vss GROUND
N.C NO CONNECTION

Cycle I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7
1 A0 A1 A2 A3 A4 A5 A6 A7 Column Address
2 A8 A9 A10 A11 L L L L Column Address
3 A12 A13 A14 A15 A16 A17 A18 A19 Row Address
4 A20 A21 A22 A23 A24 A25 A26 A27 Row Address

TABLE III
TYPICAL ADDRESSING CYCLES FOR A NAND FLASH CHIP

‘snapshot’ of the wear leveling process (the exact binary copy
of the physical flash memory at one particular moment) no
knowledge of the ‘dynamic behavior’ of the wear leveling
algorithm is needed.

The electrical interface of NAND flash differs from that
of RAM. NAND flash has a multiplexed address/data bus,
generally referred to as the I/O (Input/Output) lines. This bus
can be either 8 or 16 bits wide. An example of the electrical
interface of a NAND flash chip is shown in figure 2, with the
pin names in table II. Data in the NAND flash chip is accessed
by first applying the address of the required data on the I/O
lines. As the highest address is generally higher than can be
reached with 8 or 16 I/O line bits, the address is latched into
the chip in three to five address cycles. After the address is
latched into the chip, the data can be clocked out over the
same I/O lines. A typical sequence to get access to data in a
NAND flash chip is shown in table III.

Further explanation of the inner workings of flash memory
and the differences between NAND and NOR flash is beyond
the scope of this article.

B. Logical Characteristics

There are several ways in which flash memory can be
used as file storage in embedded systems. Three of them are

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 3

explained below. A simplified diagram of components involved
in host Operating System (OS) access to a flash file system
is shown in figure 3. As a reference, the situation for a hard
disk is shown on the left hand side. In case of a hard disk,
the host OS accesses the hard disk through the file system
driver (FSD). The FSD issues commands to the hard disk, for
instance the ATA7 command ‘Read Sector’ to read data from a
Logical Block Address (LBA8). See [8] for more information
on ATA commands.

A USB flash disk presents itself to its host as a storage
device. After mounting, the host OS can access the device. On
the ‘Wintel’ platform for example, a new drive is created when
a USB flash disk is inserted into a USB port, after which files
can be accessed. The disk access commands issued by the FSD
are channelled through USB to the USB flash disk. The USB
flash disk controller interprets these commands and accesses
data in flash memory. To manage the special properties of flash
memory the controller generally stores additional information9

with that data. For instance, the LBA in the ATA command
will not be the same as the physical address in the flash chip
where the data is actually stored. Information necessary for
mapping a LBA to a physical location is stored in the flash
memory chip as well.

An embedded system, like a mobile phone or a digital
camera, can use a similar mechanism, see figure 3, ‘embedded
device 1’. When the embedded system is connected to a host,
the host OS can access the devices flash file system through
standard disk access commands. The devices OS (Windows
CE, Symbian, proprietary) receives the disk access command
from the host OS file system driver and returns the requested
data. In this way, the host OS doesn’t see any difference
between a hard disk or an attached device.

Another way of accessing flash based storage in an embed-
ded device is shown in figure 3, ‘embedded device 2’. Here the
flash file system is accessed through a proprietary application
that runs on the host OS. The application communicates with
the embedded system and presents the data in the flash file
system on the host. An example of this mechanism is access
to a disk on a windows CE device through ActiveSync. Ac-
tiveSync makes use of the Remote Application Programming
Interface (RAPI)10 to get data, such as files on the devices file
system, to the host. Although in this case the file system on the
device can be viewed in the same way as other file systems
on the host (with windows explorer), the higher level flash
file system on the device might be of a completely different
structure that usual in magnetic media.

III. DATA ACQUISITION

The first principle when examining electronic evidence is to
keep data held on a storage medium unchanged. For embedded
systems this principle is more challenging than it looks at first

7AT Attachment (ATA) is a standard interface for connecting storage
devices such as hard disks and CD-ROM drives inside personal computers.

8Logical Block Address, the address of data by the linear mapping of
storage units.

9Also called meta data.
10msdn.microsoft.com/library/en-us/wceactsy/html/cerefRAPIReference.

asp.

Fig. 3. Components involved in hard disk and flash memory access

sight. Issues like network connections are similar to the open
systems world although it might be more difficult to detect
that an embedded system is connected to other systems. For
flash memory wear leveling might cause unpredictable data
changes. Switching mobile phones off and/or on has shown
data changes probably caused by wear leveling and/or garbage
collection algorithms. More research is needed on this topic
but for now the general rule is to keep the number of power
cycles as low as possible.

In this chapter three possible data acquisition approaches
are presented for obtaining a full copy of flash memory data.
flasher tools are discussed first, followed by a method using
the JTAG11 test access port of an embedded device. Finally
the most invasive method is described in which the flash chip
is physically removed and read with an external reader.

A. Flasher Tools

The most easy and non-invasive way to read flash data
is by using a simple hardware interface and software that
copies all flash memory data from the target system to
another system for further analysis. Unfortunately there’s no
general method for this procedure because every embedded
system can have its own dedicated interface to data stored in
flash memory chips. There’s also no standardized “embedded
system operating system” with documented low level flash
memory access functions. However, memory copying tools
specifically targeted towards a certain device (range) exist
and can sometimes be used for forensic purposes. These tools
mainly originate from two sources: manufacturers or service
centers who use these tools for debugging and diagnostics and
sometimes for in field software updates, and hackers who use
these tools for checking and changing device functionality12.

Great care should be taken when using these tools for foren-
sic examinations. Besides memory copying functionality these
tools sometimes have other options13 which are devastating

11JTAG: Joint Test Action Group, see “IEEE Std 1149.1 Standard Test
Access Port and Boundary-Scan Architecture”.

12In the mobile phone area these hacker tools are used for example to
change the IMEI, to remove lock codes or for upgrading or debranding.

13Like writing or erasing memory, changing serial numbers or adding
functionality.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 4

Fig. 4. Screenshot of twister series flasher box software

in a forensic context. Before usage on an exhibit a flasher
tool needs to be tested on a similar device from a reference
collection: once thoroughly to check the functionality, and
preferably before each individual examination to train the
examiner in using only the forensically sound options of such
a tool.

For mobile phones a lot of these tools can be found on
the internet in forums like gsm-forum [23] or online shops
like gsmtechnology [24] or gsm-server [25]. Flasher boxes are
mostly accompanied by a large number of cables to connect
different phone models.

An example of a flasher box with software which can be
used with a wide variety of phones is the Twister flasher box.
Figure 4 shows a screenshot of the Twister series flasher box
software. With this software it is possible to make full memory
copies of a large range of Nokia models. For some models
only partial memory copies are possible. Figure 5 shows a
screenshot of a tool for making complete flash memory copies
of Samsung D500/D600 handsets. Recent versions of this tool
also copy the meta data needed for reconstruction of the file
system (see section IV-B). A lot of these flasher tools work in a
similar way: they enter the bootstrap mode of a phone; upload
dedicated flash loader software to RAM; execute this software
and then use it for low level access to the flash memory.
Further research is needed to incorporate this mechanism in
future forensic mobile phone acquisition software.

1) advantages and disadvantages:

• Hardware connection is usually easy with a connector.
• Flash memory can be imaged without de-soldering of

flash memory chips.
• Some tools do not make a full forensic image of flash

memory (some do only parts of the memory space or
skip spare area).

• It can not be guaranteed that no data is written in flash
memory.

Fig. 5. D500 OneNAND Downloader

B. JTAG

When a forensically sound image cannot be produced with
flasher tools, a second option is to use a JTAG14 test access
port of an embedded device. A JTAG test access port is
normally used to test or debug embedded systems but can
also be used to access flash memory [11].

This section explains about two test modes (extest15 and
debug mode) and how to use these test modes for forensic
imaging of flash memory. JTAG enabled boards have extra test
pads, usually not directly reachable for the user. The second
part of this section describes a method to find this JTAG test
access port on an embedded system with unknown layout.

1) How to access flash memory using JTAG: Flash memory
chips are not JTAG enabled. But, as shown in an example
embedded system in figure 6, flash memory chips are usually
connected to other chips like a processor. This processor can
be used to gain access to flash memory if the processor is
JTAG enabled. Most JTAG enabled processors offer an extest
mode or debug mode. Note that extest or debug mode may not
be available on all processors and some processors offer both
modes. The next two paragraphs explain how to use these two
modes for forensic imaging of flash memory.

a) Extest mode: In extest mode, all processor pins are
controlled by a JTAG controller while the processor core is
disabled. Test vectors are loaded or read using a, usually,
long shift register. An external flash memory can be read by
loading and reading a series of test vectors. An example in
figure 7 shows how to access a NOR flash memory using
extest mode and a series of two test vectors.

14JTAG: Joint Test Action Group, see “IEEE Std 1149.1 Standard Test
Access Port and Boundary-Scan Architecture”.

15Extest: External test mode.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 5

Fig. 6. An example of an embedded system

Fig. 7. Using extest mode for accessing memory

1) The first test vector contains an address of a NOR flash
memory location and also control-signals (ce, r/w) with a
read command. This test vector is activated after loading.
See step 1 in figure 7.

2) After an access time, the flash memory chip responds
with the requested data on the data bus and is captured
in a second test vector. See step 2 in figure 7.

3) This second test vector is read by a PC and the data from
the data bus is stored in a file. See step 3 in figure 7. An
image of a NOR flash memory chip can be produced by
repeating these three steps for all memory locations.

Also NAND flash memory chips can be imaged using extest
mode. However this will be slower because it takes a higher
number of test vectors to read a byte or word of data from a
NAND flash memory. Especially an address latch cycle takes
more test vectors compared to a NOR flash memory.

b) Debug mode: Debug circuitry build in a processor can
be used to debug embedded software running on this processor.
JTAG circuitry in the processor has extra registers to stop and
start execution, read status registers or to write and read data
from external memory chips. This last option can be used for
producing an image of NOR flash memory. A commercially
available debugger like JTAGjet from Sygnum systems [15]
can be used for this task. Producing an image of NAND flash
memory cannot be done or is difficult using a commercially
available debugger.

2) How to find a JTAG test access port: Before an image
of flash memory can be produced the JTAG test access port
has to be found in an embedded system. On some PCB’s16

the test pads of the JTAG test access port are located in a
row and clearly marked, but usually they look similar to other
test pads and may even be spread over both sides of the PCB,
making it difficult to find them between all other test pads.

16PCB: Printed Circuit Board.

Fig. 8. JTAG test access port of a Samsung SGH-D500

When a manufacturer of an embedded system cannot or does
not want to give information about its JTAG test access port, a
forensic examiner could try to find the JTAG test access port.
This section explains some methods to find a JTAG test access
port.

1) Modern embedded systems use a processor chip build
in a micro BGA17 casing. A way to find the JTAG
test access port is to de-solder the processor chip of
a reference embedded system. Traces on the PCB can
be measured with a multi-meter to find the JTAG test
access port. This method needs the availability of a
reference embedded system with an equal PCB layout
and usually leads to the destruction of this reference
embedded system.

2) Most embedded systems use a multi-layer PCB. A multi-
layer PCB can be viewed with an X-ray machine. The
traces can be followed by focusing on the right layer.
However, parallel running tracks in different layers and
components on both sides of the PCB mostly thwart the
attempts to follow the interesting connections.

3) Measure all test pads on the PCB. Because JTAG inputs
and output have special properties it is possible to find
the JTAG test access port between all other test pads.
First a simple measurement has to be done on all test
pads of a reference embedded system. This first step
eliminates most test pads and can be done relatively
fast, although the number of test pads can be high
(>100) on some embedded systems. This measurement
leads to a limited number of candidate test pads (test
pads belonging to the JTAG test access port). The test
access port can be found with a second measurement
by testing all possible input / output combinations with
an exhaustive search algorithm until a valid signal is
received.

Figure 8 shows an example of a JTAG test access port on a
SGH-D500 from manufacturer Samsung. This is an example
where the test pads of the JTAG test access port are located
in a row.

3) JTAG advantages and disadvantages:
• The risk of changing data is minimized. It can be guar-

anteed that no data is written in extest or debug mode.
However there is always at least a short period between

17BGA: Ball Grid Array.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 6

power-up and the time when debug or extest mode is
entered. In this period the system itself can interact with
flash memory

• Flash memory can be imaged without de-soldering of
flash memory chips.

• A complete forensic image can be produced (all data,
inclusive spare area, bad blocks etc).

• A disadvantage is that communication in extest mode is
slow. Debug mode can be faster however.

• A JTAG test access point can be difficult to find.
• Not all embedded systems are JTAG enabled.

C. Physical Extraction

Another way to produce an image of flash memory is to
physically remove a flash memory chip from a PCB and read
this flash memory chip with a memory chip programmer or
reader. This method can be used when JTAG is not available
and software tools can not be used.

This section starts with a description of methods to de-
solder chips from a PCB. A chip usually has to be prepared
for further processing (cleaning and restoring connections)
after removing. This is discussed in the second part of this
section. The third part of this section describes how to read
flash memory chips with a programmer or reader and discusses
the sockets to use.

1) De-soldering of flash memory chips: Most chips are
packed in a TSOP18 or micro BGA19 casing nowadays. This
paragraph discusses methods to remove these chips because
special de-soldering equipment is needed for de-soldering
to prevent damaging of chips and therefore loss of data.
Especially chips packed in micro BGA casings need special
care.

a) How to remove TSOP chips: A NAND512 from man-
ufacturer ST(SGS-Thomson) is an example of a flash memory
chip packed in a TSOP casing. Although not preferred, TSOP
chips can be removed from a PCB with a soldering iron.
This method is not preferred because a lot of solder has to
be applied on the pins of the chip. It takes a long time to
clean the chip afterwards. A better way of removing a TSOP
chip is with hot air. Figure 9 shows how this method works.
Hot air is blown on the edges of a TSOP chip. Therefore the
temperature of the chip itself stays lower than the temperature
of the solder connections. When the solder is melted a vacuum
air gripper pulls the chip off.

b) How to remove micro BGA chips: An example of a
flash memory chip in micro BGA casing is RD28F6408W18
from manufacturer Intel. This example has 56 balls.

Micro BGA chips can be removed with hot air using a
rework station. A rework station uses a temperature profile to
remove a chip. The temperature has to be hot enough to melt
the solder. But be careful: The chip may be damaged if the
temperature is too high. The reader is referred to [13] for more
information about rework temperature profiles. Especially lead
free chips must be handled carefully because lead free solder
has a higher melting temperature. The temperature profile is

18TSOP: Thin Small-Outline Package.
19BGA: Ball Grid Array.

Fig. 9. Removing TSOP chips with hot air

Fig. 10. Example of a micro BGA chip (6408W18B from Intel)

different for each chip and PCB because the convection of
heat is subject to many parameters like the thickness of the
PCB, the number of layers, the size of the nozzle and the chip
size. Always practice on a reference model before removing a
chip from an exhibit and use a temperature sensor mounted at
the side of the flash memory chip for temperature logging. An
example of a rework station is a TF2000 from manufacturer
Pace [14]. This rework station can also be used to replace
chips.

2) How to prepare a chip for further processing: Pins of a
TSOP chip can be cleaned with solder wick and flux remover.
Make sure that the pins are nicely aligned and no old solder is
left behind on the pins. If a micro BGA chip is removed from
a PCB the balls on the chip are damaged. Some solder is left
behind on the chip and the rest is left behind on the PCB. The
result is that the balls have different sizes. These differences
in size are a problem for most sockets. These sockets are
designed for virgin chips with balls of equal size resulting
in bad connections when an unprepared micro BGA chip is
used.

One solution for this problem is to repair the balls of the
chip. This process is called reballing. Although other methods
are available the best method is to use a reballing machine.
This machine puts little balls of solder on the connection and
locally melts it with a laser beam, but this machine is very
expensive. A solution to omit reballing is to use a socket with
little springs also called pogo pins. The chip is pressed onto
the springs and the springs correct the difference in height of
the balls. A solution with a socket with pogo pins is preferable
because this saves a reballing step and the risk of losing data
is minimized.

After cleaning, the flash memory chip can be read with
a programmer or reader. This memory chip programmer or

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 7

Fig. 11. Pogo-pin

Fig. 12. Universal socket (left) and locator with chip (right)

reader usually has several types of ZIF20 sockets for connect-
ing a memory chip to the programmer or reader. Flash chips in
TSOP casing usually use a casing with 48 pins. Therefore most
TSOP chips can be read with only one type of socket. Micro
BGA chips, however, are found in many different sizes and
differ greatly in number of balls. Usually chips have casings
between 40 balls up to 167 or more. The number of sockets
to be used is huge (>40) and continues to grow. Usually a
socket is expensive and has a long delivery time. Therefore it
is not feasible to buy a new socket for each type of chip.

A solution for this problem is to use a socket that can be
adapted for many types of chip casings [18]. The solution
presented in this paper uses a matrix of 15 x 15 pogo pins
where sockets are available for 0.5mm, 0.75mm and 0.8mm
pitch. The flash memory chip is held into position by a locator.
This locator is specific for each type of casing and can be made
relatively fast and easily with a milling machine and is cheap.
See figure 12.

3) Flash memory chip programmer or reader: A flash
memory chip can be read with a commercially available
memory chip programmer like BP 1600 from manufacturer BP
Microsystems [16]. A disadvantage is that a driver is needed
for each type of memory chip. If a driver for a certain type
of chip is not available, the manufacturer of the programmer
has to program this driver. This can take some time and is not
always possible when a datasheet is not available for example.

Another solution is to use a universal flash chip reader.

20ZIF: Zero Insertion Force.

Fig. 13. Schematic of NFI memory toolkit

This custom made design is called ‘NFI memory toolkit’. A
schematic is drawn in figure 13.

An FPGA is used for communicating with a flash memory
chip where configurations are available for a NAND and
NOR flash protocol (with multiplexed and de-multiplexed
address bus). All parameters, like address bus size and data
bus size are fully customizable by the PC software. In case
of a NOR flash memory a data structure is read from the
NOR flash memory (CFI21 data structure). This data structure
contains all parameters needed for reading that particular flash
memory (like protocol, memory size etc). The command to
read this data structure is compatible with all protocols and
the toolkit software automatically uses the parameters to read
a NOR flash chip without any configuration from the user.
NAND flash chips can also be read automatically because the
number of protocols used by NAND flash chip is very limited.
The toolkit software automatically scans all protocols until a
correct response is received from the NAND flash chip. Due
to the automatic configuration properties of the software it is
sometimes possible to read flash chips even if a datasheet is
not available.

4) Advantages / disadvantages of physical extraction:
• It can be guaranteed that no data is written in flash

memory because the embedded system stays powered
down.

• Data from broken or damaged embedded systems can be
recovered.

• A complete forensic image can be produced (all data,
inclusive spare area, bad blocks etc).

• A disadvantage is that there is a risk of damaging the
flash memory chip due to the heat for de-soldering.

• The embedded system has to be opened to reach and de-
solder flash memory chips.

IV. FILE SYSTEM ANALYSIS

Data acquisition as described in the previous chapter results
in one or more binary files containing linear bitwise copies of
flash memory data. Before any volume analysis and succeed-
ing file system analysis can take place, the sectors of data as
used by the high level file system need to be placed in the
right order. For devices with a flash file system (FFS22) this

21CFI: Common Flash Interface.
22Current definitions of a flash file system are a bit greedy. In this paper the

term flash file system (FFS) is used to describe data translation mechanisms
between the physical flash chip and the file system API of the host operating
system. This covers flash translation layers (FTL) of disk-drive emulators and
dedicated flash optimized file systems.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 8

means finding out how the FFS maps physical data to logical
data and how the difference between valid and invalid data
can be determined. The result of flash file system analysis is
a method that splits the physical data into two parts: a file
with all logical sectors in the right order belonging to the
actual high level file system and a file with all other data not
belonging to the (current) high level file system.

The file system analysis process is explained in the next
sections in the context of USB memory sticks and for mobile
phones.

A. File System Analysis on USB Memory Sticks

The flash file systems on USB memory sticks are usually
relatively simple mechanisms that only translate the Logical
Block Number used in high level file systems to a low level
physical address and do not support wear levelling. In the file
systems described in this chapter, the block size of the flash
file system is equal to the erase block size of the flash memory
chip used. This means that when a logical block changes, the
new version is stored in a new erase block and the complete
old version is erased. This is not a very efficient way of dealing
with flash memory, because pages within an erase block that
are not changed are still copied to the new block and the old
page is erased, yielding a higher wear that absolutely necessary
for this block.

In the USB memory sticks studied for this chapter, the
concept of zones is used in two devices23. In these devices, a
zone is defined as a group of erase blocks, for example: 1024
erase blocks are grouped into a zone. Within this zone, 1000
blocks are actively used to store the high level file system, 24
blocks are kept aside to replace bad blocks when they arise.
These blocks are marked in a special way, so that they can be
recognised by the controller as such.

For the study on which this section is based a reference
collection of USB memory sticks was needed. To create this
collection, colleagues at the NFI were asked whether they
owned any USB memory and whether they wanted to trade
it for a new 128 Mbyte device. This resulted in 45 sticks of
different make and model.

1) Identification of controller and memory chips: The con-
troller chips found in USB sticks are sometimes hard to
identify, mainly because often only a manufacturer logo and
a part number can be found on the chip. But even with this
information and some creative Internet queries the manufac-
turer of the controller can be identified. The memory chips
are often much easier to identify. The memory chip usually
carries the manufacturer name and logo and the part number.
Furthermore, contrary to controller chips, flash chips appear
to be produced by companies well known in the electronics
industry.

In the reference collection of 45 USB memory sticks, 16
different manufacturers of controllers have been identified,
who produced 24 different controllers. Table IV shows all
controllers identified in the reference collection. In the ref-
erence collection, 8 different manufacturers of NAND flash
memory have been identified, who produced 26 different types

23Smart Media format and the Alcor 9385 controller format.

TABLE IV
CONTROLLER CHIPS IDENTIFIED IN THE REFERENCE COLLECTION

Brand Type Company Website

SSS 6633 www.3system.com.tw6666

ALCOR
AU9382

www.alcormicro.comAU9384
AU9385

ChipsBank CBM1183 www.chipsbank.com
PQI CLCPC02 www.pqi.com.tw

M-Systems T4 www.m-systems.comTitan
KTC FC1325N www.ktc.com.tw
Lexar FC1610 www.lexar.com
GenesysLogic GL814 www.genesyslogic.com

OTi
OTi002168

www.oti.com.twOTi006808
OTi006828

PointChips PP2201 www.pointchips.comPP2366
Silicon Motion SM3210 www.siliconmotion.com.tw

SONIX SN11085A www.sonix.com.twSN11088B
Trumpion t33521FL www.trumpion.com.tw
Prolific ? www.prolific.com.tw
SanDisk ? www.sandisk.com
Silicon Integrated Systems Corp. ? www.sis.com

TABLE V
NAND FLASH CHIPS, IDENTIFIED IN THE REFERENCE COLLECTION

Brand Type Company Website
Hitachi HN29V51211T-50 www.hitachi.com

Hynix
HY27UF081G2M-TPCB

www.hynix.comHY27US08121M-TCB
HYF33DS512800ATCG1

Samsung

K91FG08U0M-YBB0

www.samsung.com

K9F1208UOM-YCB0
K9F1G08U0A-PCB0
K9F1G08U0M-VIB0
K9F1G08U0M-YCB0
K9F1G16U0M-YCB0
K9F2808U0B-YCB0
K9F2808U0C-YCB0
K9F2808U0M-YCB0
K9F5608U0A-YCB0
K9F5608U0B-YCB0
K9F5608U0C-YCB0
K9K1G08U0M-YIB0

RF N1208U0B-0FF ?

ST NAND256W3A0AN6 www.st.comNAND512W3A0AN6
SanDisk S4164901 www.sandisk.com

Toshiba

TC58128FT

www.toshiba.comTC58DVG02A1FT00
TC58DVG04B1FT00
TC58DVM92A1FT00

of chips. Table V shows all unique memory chips identified
in the reference collection.

To put the number of different memory chips in perspective,
most NAND flash memory chips are compatible but some
important properties are differing. Some of these properties
are:

• Storage capacity: 16 Mbyte to 128 Mbyte
• Number of addressing cycles: three, four or five
• Width of the I/O bus: 8 or 16 bit
• Operating voltages: 1.70~1.95V, 2.4~2.9V, 2.7~3.6V
• Erase block size: 16 kbyte, 128 kbyte

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 9

Fig. 14. Block shifting into previous zone because of bad block skipping

• Page size: 528 byte, 2112 byte
• Housing: TSOP 48

2) Making an exact copy of the flash chip(s): When the
chip is extracted from the PCB, it can be read with a device
programmer24 as described in section III-C. When reading the
content of flash chips one needs to be aware of the fact that
some programmers have a special way of handling NAND
flash. When programming a NAND flash in a production
environment, the programmer obviously wants to skip bad
blocks. Further more, when a file is loaded in the programmer,
one wants to be sure that the file will fit in the flash chip, so the
programmer will only accept files smaller than the guaranteed
minimal number of good blocks. These two properties often
also play a role when reading the device. Bad blocks are not
read, and only the guaranteed minimal number of good blocks
is read. For making a forensically sound copy of a memory
chip this is not the desired behaviour.

Skipping of bad blocks can lead to the following problem
when reconstructing the high level file system: Suppose a
USB memory controller divides the memory into zones of 256
blocks. Each block (belonging to the high level file system)
within a zone has to have a unique number, stored in the spare
area of each page in that block. Then one bad block in a zone
arises. After this, the memory is imaged with a programmer
that skips bad blocks. The resulting image is also split up
into zones. Now, the zone with the bad block will contain one
block of the next zone because all blocks after the bad block
will be shifted one block in the image. Now it will be very
likely that we have two blocks with the same ’unique’ number
in one zone. See Figure 14.

Reading up to only the guaranteed minimum number of
good blocks can result in blocks at the high end of the memory
chip not being read. These blocks might very well contain parts
of the high level file system so not reading them might hinder
reconstruction of the high level file system.

There are several solutions to these problems. One is to
request the manufacturer of the device programmer to make a
special version of the algorithm for the specific chip which
reads all blocks, good and bad. Another is to develop an
‘in house’ solution. For the Memory Toolkit, described in
paragraph III-C3, an algorithm for reading NAND flash was
developed. Furthermore, an adapter socket was made to make

24We initially used a BP1600 from BP Microsystems.

Fig. 15. Smart Media format

TABLE VI
BLOCK ADDRESS INSIDE THE BLOCK ADDRESS FIELDS

Byte D7 D6 D5 D4 D3 D2 D1 D0
518, 523 0 0 0 1 0 BA9 BA8 BA7
519, 524 BA6 BA5 BA4 BA3 BA2 BA1 BA0 P

contact to TSOP 48 housings. With this system a complete
binary copy of a NAND flash memory chip can be made. The
rest of this paragraph is based on complete binary copies of
flash chips, made with the NFI memory toolkit.

3) Converting the copy to the high level file system: In
order to convert the exact copy of the NAND flash memory
back to the file system as seen by the host OS, the meta data
in the NAND flash memory needs to be interpreted. There are
three main questions in this regard:

1) What is the granularity of the flash file system?
2) Where is the meta data stored?
3) How can the meta data be interpreted?
The answers to these questions are of course known by

the manufacturer of the USB memory controller. Sometimes
the answers can be found in literature, see for instance the
definition of the Smart Media File System. When unlucky, the
controller manufacturer is unable or unwilling to give informa-
tion of the flash file system. This leaves reverse engineering of
the flash file system as the last option. In this case a reference
stick of same make and model is nearly indispensable.

a) Smart media flash file system: The Smart Media
format, introduced by Samsung and Toshiba in the late 90’s is
an example of how to store a FAT file system in flash memory.
Information on the Smart media flash file system cannot be
found on Samsung’s and Toshiba’s websites anymore, as the
format is ‘End Of Life’. Now only copies of the document
can be found on Internet [9].

Each FAT cluster is stored in a flash erase block, while
the information on which FAT cluster is stored in which flash
erase block is kept in the spare area of each page in the erase
block. Furthermore, the spare area contains information on the
status of the data, the block and error correction code.

BA0 - BA9 are the bits for a nine bit block address, yielding
a maximum of 210 * 0x4000 = 16777216 bytes (16 MByte)
of data. Smart Media memories with more than 16 MByte,
use zone based block management where each zone has 1024
physical blocks in which 1000 blocks are used as logical
blocks. P is the parity bit for even parity.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 10

When all bad blocks are skipped all pages within an erase
block have the same logical block number (LBN). So to
convert a raw Smart Media flash memory copy to the high
level file system, one needs to sort all erase blocks to their
logical block number (within each zone) and for each page
strip off the spare area.

b) Unknown flash file system: In case there is no knowl-
edge about the used flash file system, the flash file system
needs to be reverse engineered. A reference device of exact
same make and model as the exhibit is making the reverse
engineering job a lot easier, but it is indispensable when it
comes to validating the method.

4) What is the granularity of the flash file system?: To
illustrate a way to find out about granularity of the flash file
system, we investigated a USB memory stick with a Lexar
FC1610 controller and a K9K1G08U0M-YCB0 128 Mbyte
memory by Samsung. The flash chip has a page size of 512+16
bytes, and 32 pages per erase block. To answer the question
on granularity, first the USB memory stick is completely filled
with files of random length and content. Then a logical image
needs to be made of the USB memory stick25. When this
image is made, two lists can be produced from this image.
One containing a hash value26 over each 512 bytes of the
image. Then one containing a hash value over each 16384
bytes. Next, a physical image needs to be made of the flash
memory chip (see chapter III). From this image, two more lists
need to be made. One with hash values of each page (without
the spare area), and one with a hash value of each erase block
(without the spare area’s).

Load these lists into a tool with which the lists can be
sorted on the various columns. In this case Microsoft’s Access
and Excel27 were used. When sorting on hash values, it will
become clear whether there are identical hash values each page
bytes or each block.

In table VII, the first 7 entries in the table are shown. From
this it is already clear that on page level identical MD5 hashes
are found, so the granularity for this flash file system is page
size. Logical sector 0x26193 is stored in (mapped to) physical
page 0x141B6, 0x1C10A is stored in 0xB6AD, and so on.

Note that logical sectors 0x01DA and 0x001E have the same
MD5 hash, so most probable they have the same content. This
can have several causes:

• the test data is not random enough;
• there are identical (bad) blocks that are not changed by

the system anymore;
• there are spare blocks (within a zone) that are not yet

used to store the high level file system.

Now this mapping is based on sorting the MD5 hashes
of content of both physical and logical images. No need to
say that when we want to reconstruct the file system from a
physical copy, the mapping from physical to logical has to be
found in another way. We need to explore the meta data.

25For instance with the ‘dd’ command under linux.
26For instance the MD5 hash.
27When using Excel, the maximum number of rows is 65536. This is just

enough for comparing all sectors of a memory of 32Mbyte or all 4k blocks
of a 1 Gbyte memory.

TABLE VII
HASH VALUES CALCULATED OVER PAGE AND BLOCK DATA

Logical block (16384 bytes) Md5 hash
00001350 0005D859EC1AA3DDD590A13761CB520A
00000DCB 00186EC8203D6759E9049511E8F5E238
0000008E 001F200A0668AB9071D9E207C9783895
00001C15 0020C85071AA64FF1AF56542CD2D8AA1
00000490 0028EBEDAB6090610EDCFD0F45985F5D
00000E84 002E99C24BC440505E8477811AAB1639
000003B5 0043A7ADF684459073A1E2EE4DAC9161
...
Physical block (16384 bytes) Md5 hash
00001A43 00081EDB46257F7C61E14A175F638ADF
00001BBA 0018BC3D54C18EDCC54D8CBE344FCAEF
000008CA 0018E4019976D0B0D9984B4816241F9E
0000070B 001FC96E9FB689249EA97B03EB298052
00000BAB 002711850DA93D0707FEF134945C83D3
00001EA2 0027BA1FA4C4F2C60A4926C61E62069F
0000007A 00384D4C7AFE6548C2ACB6A6FD4AB664
...
Logical sector (512 bytes) Md5 hash
00026193 0000EE07779E4A23827BF396E501B121
0001C10A 000100B88720F47EB8C517AB796D3C20
0000F7A0 0001A198418524B9A30E99CEB0882AB2
000001DA 0001B7FE9BDAD0920FB2A505FBA0B20B
000000E5 0001B7FE9BDAD0920FB2A505FBA0B20B
000374A6 0001DE7FABA54AAEECB6E8E3295D6D32
00007D51 0001F3620D7C07A58050A223236EC1C4
...
Physical page (512 bytes) Md5 hash
000141B6 0000EE07779E4A23827BF396E501B121
0000B6AD 000100B88720F47EB8C517AB796D3C20
00006E63 0001A198418524B9A30E99CEB0882AB2
00038E5D 0001B7FE9BDAD0920FB2A505FBA0B20B
00038CC8 0001B7FE9BDAD0920FB2A505FBA0B20B
00031AA9 0001DE7FABA54AAEECB6E8E3295D6D32
00026BF4 0001F3620D7C07A58050A223236EC1C4
...

5) Where is the meta data stored?: Meta data can be stored
in the spare areas of the flash memory. In case there is a page
size granularity, all spare areas within each block will contain
different information. In case there is a block size granularity,
spare areas within one erase block may contain at least a few
identical bytes: the ones that indicate the logical block number.
In section IV-A6 a method is described to analyze meta data
stored in spare area’s.

Meta data can also be stored in the normal pages/blocks.
No generic method has yet been developed for USB memory
to analyze this type of meta data storage.

6) How can the meta data in spare area’s be interpreted?:
To illustrate a way to get information on the meaning of the
meta data, we investigated a USB memory stick with an Alcor
9385 controller and a 64 Mbyte NAND512W3A flash chip by
ST.

First the granularity of the flash file system of this controller
was investigated as described in section IV-A4. It appeared that
the granularity is erase block size. This means that the order
of pages within an erase block are not changed when stored
in physical flash memory.

To get an idea of what data is stored in the spare areas,
a table of 16 column by 256 row elements is build. Each
column represents one byte location in the spare area’s, each
row is a possible value of that byte. All spare areas are read
and for each byte location in the spare area, the counter in
the corresponding value row is incremented. When done, each
element contains the frequency of a certain value in a certain

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 11

Spare area byte location
Byte
Value

0-5 6 7 8 9 10 11 12 13 14 15

0 96 96 608 3538 3427 96 96 608 3455 3508 96
1 0 0 512 0 0 0 0 512 0 0 0
2 0 0 512 0 0 0 0 512 0 0 0
3 0 0 512 3268 3247 6810 0 512 3223 3292 6501
4 0 0 512 0 0 0 0 512 0 0 0
5 0 0 512 0 0 0 0 512 0 0 0
6 0 0 512 0 0 0 0 512 0 0 0
7 0 0 512 0 0 0 0 512 0 0 0
8 0 0 512 0 0 0 0 512 0 0 0
9 0 0 512 0 0 0 0 512 0 0 0

...
15 0 0 512 3384 3266 6738 0 512 3422 3283 6555
16 0 16384 512 0 0 0 16384 512 0 0 0
17 0 16384 512 0 0 0 16384 512 0 0 0
18 0 16384 512 0 0 0 16384 512 0 0 0
19 0 16384 512 0 0 0 16384 512 0 0 0
20 0 16384 512 0 0 0 16384 512 0 0 0
21 0 16384 512 0 0 0 16384 512 0 0 0
22 0 16384 512 0 0 0 16384 512 0 0 0
23 0 13324 512 0 0 0 13324 512 0 0 0
24 0 0 512 0 0 0 0 512 0 0 l

...

TABLE VIII
PART OF THE SPARE AREA FREQUENCY TABLE

TABLE IX
PHYSICAL BLOCK NUMBERS VERSUS SPARE AREA BLOCK NUMBER INFO

Physical Block Block number in zone
0001 0001
041F 0001
0804 0001
0C25 0001
00F8 0002
0401 0002
0808 0002
0C26 0002
0004 0004
0423 0004
0805 0004
0C27 0004

spare area byte location.
Table VIII is a fragment of the total frequency table of

the spare area’s. In the columns 7 and 12 there is an even
distribution of all possible values28. This is a good indication
that there is a counter in this byte. The columns 6 and 11 only
have values between 16 (0x10) and 23 (0x17)29, so this might
also be a counter, but only of 3 bits (bits 0 through 2) and bit 4
always high. Further examination of data in columns 6/11 and
7/12 learned that in all spare areas the data in these columns is
the same. Apparently the counter is stored twice in spare areas.
Data in column 6/11 and 7/12 adds up to an 11 bit counter,
that can address 211 erase blocks, which is 2048 * 16384 = 32
MByte. Next thing that has to be investigated is whether the
counters are contiguous. If not, the erase blocks within a zone
have to be arranged in the order of the counter in bytes 6 and 7,
but missing numbers are allowed. Of course this will decrease
the addressable memory space of the counter, and increase the
number of zones. To find out about the contiguousness of the
counter, make a table with physical block number and block
number based on byte 6/7 of the spare area.

When ordered on the last column, it is clear that each block
number appears 4 times within the whole memory, leading
to the conclusion that there must be four zones. Table XI
illustrates how to calculate logical block numbers from the

28Except for the values 0 and 255.
29Except for the values 0 and 255.

TABLE X
START AND ENDING BLOCKS OF ZONES

Zone Starting Block Ending block
0 0x000 0x3FF
1 0x400 0x7FF
2 0x800 0xBFF
3 0xC00 0xFFF

TABLE XI
HOW TO CALCULATE THE LBN

counter in byte 7/12 and bits 0-2 of byte 6/11 and the zone
number. Expressed in C code this looks like:

Logicalblocknumber = Byte7;
Logicalblocknumber += (Byte6 & 0x07) << 8;
Logicalblocknumber += (Physicalblocknumber & 0xFC00) <<1;

In the example above the LBN is 0x5B6E. All blocks can now
be rearranged by ordering the blocks by their LBN. When
done, the result can be checked by calculating and comparing
hash values over the reconstructed file system and over the
image obtained through ‘normal’ methods.

B. Mobile Phone File System Analysis

Figure 16 depicts the NAND array structure of the multi-
chip package memory in a Samsung SGH-D500 phone as
described in the datasheet [17]. Four 512 byte data sectors
are grouped into one page together with four 16 byte spare
area data. Figure 17, also from [17] explains the assignment
of the spare area bytes. The spare area description suggests
that logical sector numbers (LSN) should be stored in byte 3-
6 of each 16 byte spare area part. To verify this and determine
the storage format a sample flash memory file with known data
has been studied. The LSN is stored in byte 3-5 with the least
significant byte first as demonstrated below:

FFFF 5C35 00FE 00FF 0C03 CCFF FFFF FFFF
LSN = 00355Ch = 13660d

FFFF 5D35 00FE 00FF 0C03 CCFF FFFF FFFF
LSN = 00355Dh = 13661d

Calculating all LSN’s for an experimental flash memory file
gives different physical sectors with the same LSN. Additional
experiments were done to find out which physical sector from
a set of sectors with identical LSN’s is the sector that belongs

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 12

Fig. 16. NAND array structure of the multi-chip package memory in a
Samsung SGH-D500 phone.

Fig. 17. Assignment of spare area bytes

to the actual high level file system30. The sleuth kit fsstat and
fls tools [19] were used to verify the different LSN hypotheses.
Besides the LSN other info proved to be needed related to the
128KB+4KB block of which a sector belongs to (see figure
16). Each block starts with a special sector not belonging to
the high level file system. This sector, starting with the tag
“XSR” contains a 4 byte block number (BN) starting on the
21’th byte and a 4 byte block version (BV) starting on the
17’th byte, as demonstrated below:

5853 5231 6400 0000 0F00 0000 0100 0000 XSR1d...........
0701 0000 0100 0000 FC00 0000 0000 0000
BN = 00000001h = 1d
BV = 00000107h = 263d

For physical sectors with identical LSN’s the physical sector
with the highest physical address must be used within the
block with the highest BV. The findings have been used to
implement a python script that builds a list ListLSN containing
items for each encountered LSN. Each list item is also a list

30After searching the NAND flash memory file for file system specific tags
it looks like FAT16 is used as high level file system.

containing all physical addresses of sectors with a specific
LSN, sorted on BV and physical address within a BV. A
ListLSN example fragment:

ListLSN[23]={ 0x01264f20 , 0x01f77180 }
ListLSN[24]={ 0x01265550 , 0x01265340 ,0x01265130,0x01f77390}
ListLSN[25]={ 0x01265760 , 0x01f775a0 }

1) Reconstructing the high level file system: After building
this list extracting the actual high level file system is trivial: for
each LSN in ListLSN append 512 bytes (one data sector) from
the flash memory file starting from the first physical address
in ListLSN[LSN] (the light shaded addresses above) to a file
storing the high level file system. If a LSN is not present in
ListLSN add 512 dummy bytes instead31.

2) Recovering other high level file system data: Not all
flash memory data has been used to reconstruct the high
level file system. The remaining data can be related to older
instances of the high level file system32 or used by the
embedded systems firmware for other purposes33. For data
carving purposes it is preferred to put all remaining data
sectors in such an order to maximize the carving results. For
sectors that belonged to a high level file system it might be a
good strategy to put the sectors in the same logical order as
before they were deleted.

The ListLSN list introduced before contains information that
can be used for this purpose. If instead of all first addresses
of each ListLSN item the next addresses are used (the dark
shaded addresses in the ListLSN fragment) another high level
file system can be generated with older data. Because it is not
known when sectors are deleted and not all deleted sectors
will be available34, the reconstructed high level file system
will most likely not be fully consistent but for data analysis
purposes it will work.

In the python script mentioned before the following heuristic
approach has been used to extract all data that is not part of
the actual high level file system:

1) For each LSN item in ListLSN remove the first address35

2) For each LSN item with less address items than a certain
threshold:

a) Initialize the currents address item to the first
address of the first LSN item.

b) Export the current address item of the current LSN
item and remove it from ListLSN. Then look at all
address items of the next LSN item and try to find
the best match. The following heuristic is used for
the matching:

i) If the absolute difference between the current
LSN item’s address and the next LSN item’s

31Not every LSN is necessarily present in the flash memory file.
32For example to logical sectors belonging to a file that has been deleted

and which LSN has been reused by the high level file system. Especially for
small data objects with a high refresh frequency (e.g. FAT, directory entries),
a lot of old versions might exist in the flash memory file.

33For example as workspace for the flash file system during flash memory
clean-up operations.

34Sectors that are not part of the current high level file system can be
overwritten by the flash file system at any time.

35This address has been used to generate the actual high level file system.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 13

FILE SYSTEM INFORMATION
--
File System Type: FAT16

OEM Name: MSWIN4.1
Volume ID: 0xcccc
Volume Label (Boot Sector): KFAT0Volume Label (Root Directory):
KFAT0File System Type Label: FAT16

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 248387

* Reserved: 0 - 0

** Boot Sector: 0

* FAT 0: 1 - 122

* FAT 1: 123 - 244

* Data Area: 245 - 248387

** Root Directory: 245 - 276

** Cluster Area: 277 - 248380

** Non-clustered: 248381 - 248387

METADATA INFORMATION
--
Range: 2 - 3969666
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 4096
Total Cluster Range: 2 - 31014

FAT CONTENTS (in sectors)
--
277-284 (8) -> EOF

...

68597-68604 (8) -> EOF

Fig. 18. Output of TSK command: “fsstat -o4 -f fat D500 FATFS.bin”

address is exactly the sector size this address is
selected and no other addresses are matched.

ii) If the current LSN item address is the last
data sector of a block and the next LSN item’s
address is the first data sector of a block this
address is selected and no further matching is
done.

iii) If no match has been made, don’t pick an
address but restart at a. with the first address
of the first item in ListLSN.

c) If a match is found go to b. with the matched
address as current item’s address of the current
LSN item.

3) Step 2. is repeated until no LSN items exist with less
address items than the threshold value.

4) All remaining sectors from ListLSN are selected and
there related data sectors are exported.

The described method does not guarantee the most optimal
sector order for data analysis applications, it’s just a quick
heuristic that can possibly be improved when more knowledge
about the flash file system dynamics are known.

3) Mobile phone FAT file system analysis: The file with the
reconstructed high level file system (see section IV-B1) can be
further analyzed with any forensic disk analysis tool. Figure
18 gives the output of The Sleuth Kit (TSK) [19] fsstat tool.
Figure 19 shows the root directory of the FAT-FS displayed
with TSK command fls.

d/d 5: sounds
d/d 6: images
d/d 7: user
d/d 8: sms
d/d 9: test
d/d 10: mms
d/d 11: java
d/d 13: multimedia
d/d 14: drm
r/r 17: tfsVersionCode.tfs

Fig. 19. Output of TSK command “fls -o4 -ffat D500 FATFS.bin”

Fig. 20. The flash chips on the main board

Further information on common file system forensic analy-
sis can be found in the reference section. In chapter 5 some
flash specific issues of file system forensic analysis will be
discussed.

4) Results on a Nokia 6230: In this paragraph the reference
model phone is a Nokia 6230 with the Series 40 2nd edition
operating system. The two flash chips that were found in this
phone are: Samsung K8S2815ETA 64Mbit NOR flash and
Samsung KEE00E00CM 64Mbit NAND flash. In Figure 20
the NAND flash is encircled red and the NOR flash is encircled
green. Both chips have been physically removed and read with
the method described in section III-C.

Multimedia data is stored in the NAND flash which is
organized in 996 blocks of 8448 bytes36. Each block contains
512 bytes sized data sectors with a spare area of 16 bytes.
The first sector of each block starts with the string “SSR200”
and does not contain user data. In this 512 byte block header
the bytes {25...24}give the block number. After each sector
of 512 bytes are 10 spare area bytes. The bytes {0...1} of this
spare are contain the logical sector number. Unused sectors
have 0xffff as sector number.

Each block can contain multiple sectors with the same LSN.
The sector with the highest physical address in a block is the
valid sector. To reconstruct the FAT FS from the memory copy,
invalid sectors need to be removed; all other sectors need to be
put in the right order and for missing LSN’s numbers 512 bytes
of dummy data need to be inserted. All data not belonging to
the (current) file system can be used for data carving purposes.

5) Results on Symbian phones: According to [27], the
drive, directory and file hierarchy on the flash memory of

36The remainder of the 8 MByte can be found at the beginning and at the
end of the chip’s address space but has no recognizable block structure.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 14

phones running Symbian complies with VFAT37 specifications,
making the file system compatible with desktop PC’s. The
actual data itself however is stored in a proprietary format. The
results described in this paragraph are based on experiments
with Nokia 3650 and 7610 phones [26]. The described block
and page headers correspond to a Nokia 7610 phone, for the
3650 they are some differences in sizes and offsets.

a) Data acquisition: The flash memory of the Nokia
3650 can be copied by using the RRawDisk function of the
Symbian file server API. Because this function only works
when no other resources are accessing the file system, the
Symbian backup server was used to close all handles to open
files before using the RRawDisk function. The application to
copy the internal flash memory needs to be installed on an
external MMC card which is also used as destination for
the flash memory copy. Unfortunately this method did not
work on other Symbian phones because not all file handles
could be closed successfully. The flash memories of the Nokia
7610 have been removed physically and copied with the NFI
memory toolkit as described in section III-C.

b) Block and sector headers: The memory is divided in
128 blocks of 64 kb each. A block starts with a 76 bytes
block header, which holds information about the block. The
rest of the block contains data sectors and sector headers. Each
data sector has a 27 bytes wide header located just after the
block header header. Data sectors are written to a block in a
“bottom-up” fashion, and can have a maximum size of 512
bytes. Sequences of one or more data sectors constitute a
stream. A single stream can represent any kind of data, for
example, a file or a directory table. The data sectors that a
stream consists of need not be stored in a sequential manner,
and can span multiple blocks. The size and position of a data
sector is determined by its sector header. The sector header
also determines which stream the data block belongs to, and
the sequence number of the data-block.

If a block is empty, only the block header exists. Otherwise,
the block header is first followed by a sector header that
does not point to any data sector. Then a list of ‘useful’ data
sector headers follows. The list of sector headers is of constant
size. Table XII and table XIII contain partial specifications
(determined from experiments) of the fields of block and sector
headers.

When a file is deleted the sectors of a stream become dirty,
this is achieved by setting the valid bits in the sector header
to 0. The sector still exists in the flash device, but is marked
as dirty.

c) Files and directories: A file consists of two streams,
with the same stream ID. Only the data type field in the
sector header (table XII) will be different. 0x84 in this field
denotes that the stream represents the contents of the file itself,
while 0x81 means that the stream contains the file attributes
of this file. The only known field in this stream is the 6th byte,
which denotes whether the data stream represents a user file,
or directory: 0x01 means the stream represents a file, 0x02
means the stream represents a directory. 0x03 indicates that

37Virtual File Allocation Table, a virtual installable files system driver
serving as an interface between applications and the File Allocation Table
(FAT).

Byte Meaning
{3...0} The block number, (0-63)
{7...4} After formatting, all blocks are numbered 1 to 64. The first

dirty page that is to be erased after a format will be labeled
65, the second 66, etc This number is perhaps used by a
wear-leveling algorithm

{11...8} Initially contains the same number as 3..0, but is incremented
after the block becomes dirty and after being overwritten.
Possibly also related to wear-leveling

{15...12} Initially contains the same number as 3..0, but is incremented
after the block becomes dirty and after being overwritten.
Possibly also related to a wear-leveling

{12...43} Seems to be same for every block
{75...72} Possibly a checksum of the block header

TABLE XII
INTERPRETATION OF BYTES 0-75 OF A BLOCK HEADER

Byte Meaning
{0} Data sector attributes; bit 2 and bit 3 of this byte (bit

0=LSB) seems to indicate whether the data sector contains
valid data, or whether it is dirty

{1} The type of data that this stream represents
{2}{3} Unknown
{5...4} Stream ID
{7...6} Were always found to be zero The stream ID may be a

32-bit number, with {7..6} as the higher bytes, instead of
a 16-bit number

{9...8} Sequence number of the sector in the stream
{11...10} Seems to be always zero, though the sequence number may

be a 32-bit number, with these as the higher bytes
{13}{12} This is an address offset of the data sector. The offset is

relative to the start of the block. This address is a word-
address, so a left-shift is needed to obtain the proper byte-
address

{15}{14} Size of the data sector in bytes
{19...16} Possibly a checksum of the data sector
{23...20} Possibly a checksum of the page sector

TABLE XIII
INTERPRETATION OF BYTES 0-23 OF A SECTOR HEADER

Byte Meaning
{3...0} Length of current directory entry in bytes. This is

always a multiple of 4 bytes
{7...4} Stream id of the relevant file or subdirectory
{11...8} Some sort of counter; zero for the first directory

entry; the next entry is always 3-5 higher than the
previous. The meaning of this field is unknown

{12...size-of-entry} Name of the file/subdirectory, in 16-bit unicode.
Because the length of a directory entry is always
a multiple of four, the name will be padded with
0x0000 if the amount of characters in the name is
an odd number

TABLE XIV
THE INTERPRETATION OF A DIRECTORY ENTRY

this stream is the root-directory. A directory is stored in much
the same way as a normal file. The content of this file is a
directory table, with a list directory entries pointing to its files
and subdirectories. A directory entry is organized as depicted
in table XIV.

d) Decoding a memory copy: With the information de-
scribed in the previous section it is possible to decode the
current file system. Deleted files can be recovered by looking
for stream id’s in dirty sectors but this will be complicated if
different deleted files with the same stream id exist.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 15

V. EVIDENCE SEARCHING

After reconstruction of the high level file system and ex-
traction of all other data in the most plausible order, further
investigation of the flash memory can be done in the same
way as for any other forensic file system investigation [3].
This section will discuss some specific analysis topics related
to data originating from flash file systems.

A. File System Tools

Current forensic file system analysis tools like Encase, FTK,
R-Studio, and TSK, are not fully aware of the physical media
from which an image file originates. For advanced data recov-
ery this knowledge of the physical properties might improve
the recovery process. Flash file systems for example often
contain different versions of the same data objects because
flash memory can’t be erased in small quantities. Especially
for small objects (much smaller than one flash block) with a
high update frequency, a lot of old versions might exist outside
of the normal high level file system.

For FAT file systems the FAT and directory entries are
interesting candidates for advanced analysis because of their
size, update frequency and evidence value. To give an idea
of the amount of different versions: in an actual case with
a Samsung SGH-D500 mobile phone the flash memory file
contained 83 versions of some part of the FAT and 1464
versions of the directory “\multimedia\VIDEOS\video clips”
were all user recorded video movies are stored by default.
A common forensic tool will show the last version of the
directory, possibly with some files marked as deleted but from
the other versions of the directory data a lot of the user
behavior can be reconstructed.

The same holds for other data objects although larger
objects (like movie files) are likely to be (partly) overwritten
earlier after deletion because they occupy complete flash
blocks which can be reused immediately after deletion.

B. Dedicated Search Strategies

Some specific flash memory analysis issues are discussed
below based on a case example. In this case a doubtful
witness declares that he made a recording with his phone
on which somebody confessed a murder. A standard forensic
investigation of the mobile phone with .XRY [21] did not
show any relevant data so it was sent to the NFI for advanced
analysis on the presence of erased audio or video material.

At the laboratory the flash memory chip was analyzed of
a reference phone of the same brand and type. It contains
32 MByte of NOR flash and 128 MB of NAND flash. From
experiments it was found that multimedia data like sound,
pictures and video are stored in the NAND flash memory so
this memory was further examined on the case phone. JTAG
[10] has been used to copy the NAND flash data to a binary
file. This file has been used with the script discussed in section
IV-B1 to extract a file with the FAT file system and a file with
the remaining data in the most plausible order as discussed
before.

R-Studio has been used to load the FAT file system file
and recover all file system data to a file server. With R-
Studio three erased video files could be identified in the “video
clips” folder. The recover option of R-Studio reported that
differences between the file size and the length of the FAT
chain indicate that these files were overwritten. The video
clips folder contains a “THUMB” folder with the same file
entries but shorter file sizes. R-Studio reported that these files
were successfully recovered but because it was not possible
to decode these files they were further analyzed with TSK.
With the fls tool the cluster number of each file was decoded
from the directory entries and with the istat tool all other
file metadata was displayed. The istat tool reported that
file recovery was not possible. How these files can still be
recovered by using data sectors from the flash memory not
present in the FAT file system is illustrated with example
thumbnail “video-0003.3gp”. fls -o4 -f fat -r D500 FATFS.bin
gives for “video-0003.3gp”:

++++ r/r * 5901: video-0003.3gp

istat -o4 -f fat D500 FATFS.bin 5901 gives:

Directory Entry: 5901
Not Allocated
File Attributes: File
Size: 2720
Name: _IDEO-~3.3gp
Directory Entry Times:
Written: Tue May 3 17:41:24 2005
Accessed: Tue May 3 00:00:00 2005
Created: Tue May 3 17:41:24 2005
Sectors:
88909 88910 88911 88912 88913 88914 88915 88916
Recovery:
File recovery not possible

Looking in ListLSN for the sector numbers gives38:

ListLSN[88913]={0x06a7c940,0x044515b0,0x0444e430,0x067e0540}
ListLSN[88914]={0x06a7cb50,0x044517c0,0x0444e640,0x067e0330}
ListLSN[88915]={0x06a7cd60,0x044519d0,0x0444e850,0x067e0120}
ListLSN[88916]={0x06a7cf70,0x04451be0,0x0444ea60,0x067dff10}
ListLSN[88917]={0x06a7d180,0x04451df0,0x0444ec70,0x067dfd00}
ListLSN[88918]={0x06a7d390,0x0444ee80,0x067dfaf0}
ListLSN[88919]={0x06a7d5a0,0x0444f090}
ListLSN[88920]={0x06a7d7b0,0x0444f2a0}

The current FAT-FS uses address range 0x06a7c940-
(0x06a7d7b0+0x200) for logical sectors 88913-88920 but that
data range is currently allocated to another file. If the non FAT-
FS sectors are grouped according to the heuristic described in
section IV-B2 the following ranges appear in the resulting file:

Range 1: 0x044515b0,0x044517c0,0x044519d0,0x04451be0,
0x04451df0

Range 2: 0x0444e430,0x0444e640,0x0444e850,0x0444ea60,
0x0444ec70,0x0444ee80,0x0444f090,0x0444f2a0

Range 3: 0x067e0540,0x067e0330,0x067e0120,0x067dff10,
0x067dfd00,0x067dfaf0

After comparing data from known thumbnail video files the
data belonging to range 3 could be decoded to a valid picture

384 sectors need to be added to istat’s starting sector because the flash
manager takes the first offset sectors into account and TSK not.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 16

file showing a small thumbnail of a video clip as used by
the multimedia browser on the phone. From the decoded
thumbnails two of the related video files could be marked
as “not relevant”.

In the search for deleted audio and video data a script was
developed to use the non erased data to find all data in the
flash memory file originating from this non erased data . The
script produces a bookmark file for the Hex Workshop hex
editor [22] to make it easy to find all the known data parts.
With another script this bookmark file can be used to overwrite
all known data with a predefined pattern in order to make
searching for erased data easier. To assist the manual search for
deleted audio and video data a tool has been used developed
by the NFI to analyze video data. For this tool a .3gp parser
has been written to search for data fragments originating from
.3gp files. After extensive search no audio or video data has
been found that confirmed the statement of the witness.

VI. CONCLUSION

Three techniques have been described for making low level
byte-by-byte copies of flash memory chips. More research
needs to be done on the flash read mechanisms used by flasher
tools in order to adapt these mechanisms for usage in the next
generation of forensic data acquisitions tools. Steps have been
illustrated for translating acquired flash data to a level that
can be understood by existing forensic tools targeted towards
common used file systems. More research is needed for flash
data that can’t directly be translated to file system level. More
research is also needed on the relation between flash specific
operations like block erasing and wear leveling on one side
and the resulting artifacts and potentials for data recovery and
analysis on the other side. With the results of this research
future forensic tools might be able to improve the power and
efficiency of embedded systems examinations for reasonably
skilled IT professionals.

VII. ABBREVIATIONS

ATA - Advanced Technology Attachment
API - Application Programming Interface
BGA - Ball Grid Array
CFI - Common Flash Interface
ECC - Used for both Error Correcting Code and Error
Checking and Correction.
EEPROM - Electrically Erasable Programmable Read Only
Memory
FAT - File Allocation Table
FFS - Flash File System
FSD - File System Driver
FTL - Flash Translation Layer
I/O - Input/Output
JTAG - Joint Test Action Group
LBA - Logical Block Address
LBN - Logical Block Number
LSN - Logical Sector Number
MMC- Multi Media Card
NFI - Netherlands Forensic Institute
OS - Operating System

PCB - Printed Circuit Board
PDA - Personal Data Assistent
RAPI - Remote Application Programming Interface
SCSI - Small Computer System Interface
TSK - The Sleuth Kit
TSOP - Thin Small-Outline Package
USB - Universal Serial Bus
VFAT - Virtual File Allocation Table
XSR - Extended Sector Remapper
ZIF - Zero Insertion Force

REFERENCES

[1] R. van der Knijff, “Embedded Systems Analysis”, chapter 11 of “Hand-
book of Computer Crime Investigations - Forensic Tools and Technology”
edited by E. Casey. Academic press, 2002.

[2] W. Jansen and R. Ayers, “Guidelines on Cell Phone Forensics,” Au-
gust 2006. [Online]. Available: http://csrc.nist.gov/publications/drafts/
Draft-SP800-101.pdf. [Accessed: November 29, 2006]

[3] B. Carrier, File System Forensic Analysis. Addison-Wesley 2005.
[4] E. Sutter, Firmware Demystified. CMP Books, 2002.
[5] Samsung Electronics, “APPLICATION NOTE for NAND Flash

Memory”, rev, 2, 1999. [Online]. Available: http://www.samsung.
com/Products/Semiconductor/Memory/appnote/app nand.pdf. [Accessed:
November 29, 2006].

[6] Sandisk, “Sandisk flash memory cards - wear leveling”, October
2003. [Online]. Available: www.sandisk.com/Assets/File/OEM/
WhitePapersAndBrochures/RS-MMC/WPaperWearLevelv1.0.pdf.
[Accessed: November 29, 2006].

[7] M-Systems, “TrueFFS wear-leveling Mechanism”, Technical note
(TN-Doc-017). [Online]. Available: www.m-systems.com/NR/rdonlyres/
FCC7D817-38A5-4D80-8471-67DA793EA255/0/TN 017 TrueFFS
Wear Leveling Mechanism.pdf. [Accessed: November 29, 2006].

[8] HDDGURU, “ATA/ATAPI Command Set”, [Online]. Avail-
able: http://hddguru.com/content/en/documentation/2006.01.
27-ATA-ATAPI-8-rev2b/. [Accessed: November 29, 2006].

[9] Samsung Electronics, “Smartmedia Format Introduction (Software Con-
siderations)”, 1999. [Online]. Available: www.win.tue.nl/∼aeb/linux/
smartmedia/SmartMedia Format.pdf.

[10] B. Dipert and M. Levy, “Designing with Flash Memory,” Annabooks,
1994.

[11] M. Breeuwsma, “Forensic imaging of embedded systems using JTAG
(boundary-scan)”, Digital Investigation, vol. 3, ed. 1, March 2006.

[12] IEEE - Standards Association, “IEEE standard test access port and
boundary scan architecture - description”, July 23, 2001. [Online]. Avail-
able: http://standards.ieee.org/reading/ieee/std public/description/testtech/
1149.1-2001 desc.html.

[13] Intel, “Intel Wireless Communications and Computing Package User’s
Guide”, [Online]. Available: http://download.intel.com/design/flcomp/
packdata/wccp/25341805.pdf. [Accessed: November 29, 2006].

[14] PACE, [Online]. Available: http://www.paceworldwide.com/. [Accessed:
November 30, 2006].

[15] Signum, [Online]. Available: http://www.signum.com. [Accessed:
November 30, 2006].

[16] BPM Microsystems, [Online]. Available: http://www.bpmicro.com/.
[Accessed: November 30, 2006].

[17] Samsung Electronics, “Datasheet of the Multi-Chip Package MEMORY,
256M Bit (16M x16) Synchronous Burst , Multi Bank NOR Flash
Memory / 512M Bit(32Mx16) OneNAND, Flash*2 / 128M Bit(8Mx16)
Synchronous Burst Uni-Transistor Random Access Memory”, [Online].
Available: http://samsung.com/.

[18] Logic Technology, “Universal socket solution”, [Online]. Available:
http://www.logic.nl/trial.aspx?sid=380(ZIPpassword=”FFIT-2006”). [Ac-
cessed: November 30, 2006].

[19] The Sleuth Kit, [Online]. Available: http://www.sleuthkit.org. [Accessed:
November 29, 2006].

[20] rtt, “R-Studio Data Recovery Software”, [Online]. Available: http://
www.data-recovery-software.net/. [Accessed: November 29, 2006].

[21] Micro Systemation, “.XRY phone examination”, [Online]. Available:
http://www.msab.com/en/. [Accessed: November 29, 2006].

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007 17

[22] BreakPoint Software, “Hex Workshop, a set of hexadecimal develop-
ment tools for Microsoft Windows”, [Online]. Available: http://www.
hexworkshop.com/. [Accessed: November 29, 2006].

[23] GSM-Forum, [Online]. Available: http://forum.gsmhosting.com/vbb/
index.php. [Accessed: November 29, 2006].

[24] Multi-com, [Online]. Available: http://www.gsm-technology.com. [Ac-
cessed: November 29, 2006].

[25] GSM-Technology, [Online]. Available: http://www.gsm-technology.com.
[Accessed: November 29, 2006].

[26] K. Li, “Datarecovery on a Nokia 3650”, NFI internal report, August
2005.

[27] Symbian, “Symbian Developer library”, [Online]. Available: http://www.
symbian.com/developer/techlib/sdl.html. [Accessed: November 29, 2006].

Marcel Breeuwsma Marcel Breeuwsma received a BSc in computer science
from the ‘The Hague University’. In 1996 he joined the Netherlands Forensic
Institute to work in the field of R&D. His main interests are digital electronics,
embedded processors, embedded software and FPGA chips. He developed a
Memory Tool Kit including several versions of software, builds hardware
for an organizer analysis tool and did research in using JTAG for forensic
purposes.

Martien de Jongh Martien de Jongh has an educational background in
electrical engineering and electronics and a lot of experience in consumer
electronics. He started to work at the Netherlands Forensic Institute in 1998
where he first worked on acquisition and decoding of data from mobile
phones and is currently specialized in physical data acquisition from digital
electronics.

Coert Klaver Coert Klaver received his B.Sc. in computer science in 1986
from the s-Hertogenbosch College of Advanced Technology. He has worked
for several public organizations and private companies since then, developing
embedded software and hardware. In 1999 he joined the Netherlands Forensic
Institute to work as a forensic scientist in the field of embedded systems. His
main interests are embedded operating systems in personal digital electronics
and improvised electronics used in high tech fraud schemes.

Ronald van der Knijff Ronald van der Knijff received his B.Sc. degree
on electrical engineering in 1991 from the Rijswijk Institute of Technology.
After performing military service as a Signal Officer he obtained his M.Sc.
degree on Information Technology in 1996 from the Eindhoven University of
Technology. Since then he works at the Digital Technology and Biometrics
department of the Netherlands Forensic Institute as a scientific investigator.
He is responsible for the embedded systems group and is also court-appointed
expert witness in this area. He is author of the (outdated) cards4labs and TULP
software and founder of the TULP2G framework. He is a visiting lecturer on
‘Cards & IT’ at the Dutch Police Academy; a visiting lecturer on ‘Smart
Cards and Biometrics’ at the Masters Program ‘Information Technology’ of
TiasNimbas Business School and a visiting lecturer on ‘Mobile and Embedded
Device Forensics’ at the Master’s in ‘Artificial Intelligence’ of the University
in Amsterdam (UvA). He wrote a chapter on embedded systems analysis in
Eoghan Casey’s Handbook of Computer Crime Investigation - Forensic Tools
and Technology.

Mark Roeloffs Mark Roeloffs received his B.Eng. degree on electrical
engineering in 2004 from the Rotterdam University (a university of Applied
Sciences). Since then he has worked at the Digital Technology and Biometrics
department of the Netherlands Forensic Institute (NFI) as a forensic examiner.
At NFI, Mark investigate mobile telephones for deleted data. He has also
presented the course ‘Reading GSM Telephones for Investigators’ at the Dutch
Police Academy.

