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Abstract—Previous work has demonstrated that systems with
unencrypted DRAM interfaces are susceptible to cold boot
attacks – where the DRAM in a system is frozen to give it
sufficient retention time and is then re-read after reboot, or
is transferred to an attacker’s machine for extracting sensitive
data. This method has been shown to be an effective attack
vector for extracting disk encryption keys out of locked devices.
However, most modern systems incorporate some form of
data scrambling into their DRAM interfaces making cold boot
attacks challenging. While first added as a measure to improve
signal integrity and reduce power supply noise, these scram-
blers today serve the added purpose of obscuring the DRAM
contents. It has previously been shown that scrambled DDR3
systems do not provide meaningful protection against cold
boot attacks. In this paper, we investigate the enhancements
that have been introduced in DDR4 memory scramblers in
the 6th generation Intel Core (Skylake) processors. We then
present an attack that demonstrates these enhanced DDR4
scramblers still do not provide sufficient protection against cold
boot attacks. We detail a proof-of-concept attack that extracts
memory resident AES keys, including disk encryption keys.

The limitations of memory scramblers we point out in this
paper motivate the need for strong yet low-overhead full-
memory encryption schemes. Existing schemes such as Intel’s
SGX can effectively prevent such attacks, but have overheads
that may not be acceptable for performance-sensitive applica-
tions. However, it is possible to deploy a memory encryption
scheme that has zero performance overhead by forgoing in-
tegrity checking and replay attack protections afforded by Intel
SGX. To that end, we present analyses that confirm modern
stream ciphers such as ChaCha8 are sufficiently fast that it is
now possible to completely overlap keystream generation with
DRAM row buffer access latency, thereby enabling the creation
of strongly encrypted DRAMs with zero exposed latency.
Adopting such low-overhead measures in future generation of
products can effectively shut down cold boot attacks in systems
where the overhead of existing memory encryption schemes
is unacceptable. Furthermore, the emergence of non-volatile
DIMMs that fit into DDR4 buses is going to exacerbate the risk
of cold boot attacks. Hence, strong full memory encryption is
going to be even more crucial on such systems.

I. INTRODUCTION

Even if DRAMs are expected to lose their content imme-
diately after the system is powered off, studies have shown
that they are capable of retaining data for several seconds
after power loss – with only a fraction of data being lost.
Such data retention in DRAMs has been shown to be a
security risk [1]–[3], as systems that rely on disk encryption
and passwords often store sensitive data in DRAM under
the assumption that a reboot or removal of the DRAM will

destroy the data. However, in 2008, a team of researchers
demonstrated that disk encryption keys could be recovered
from DDR and DDR2 DRAMs by transferring memory
modules from a locked machine into an attacker’s machines
[3]. Since charge decay in capacitors slows down signifi-
cantly at lower temperatures, they cooled the DRAMs using
off-the-shelf compressed air spray cans before transferring
them to another machine. This technique came to be known
as a cold boot attack. After this demonstration, other follow-
on works have explored the feasibility of cold boot attacks
on a variety of DRAM-based platforms [4].

In recent years, however, it has become increasingly
challenging to execute cold boot attacks or perform phys-
ical memory forensics due to the introduction of DRAM
memory scramblers. Modern processors with DDR3 and
DDR4 DRAM scramble data by XOR’ing it with a pseudo-
random number before writing it to DRAM [5], [6]. These
scramblers were initially introduced to mitigate the effects
excessive current fluctuations on bus lines by ensuring bits
on the memory bus transition nearly 50% of the time (see
Section II-C). The analysis we present in this work reveals
that scramblers in many modern processors (e.g., Intel’s
Skylake) have incorporated extra features that obfuscate
data. Since these features are not necessary to mitigate the
electrical problems that motivated the use of scramblers in
the first place, we surmise they were added as a first line of
defense against cold boot attacks.

Since the details of these scramblers remain undisclosed,
it has become challenging to extract and analyze DDR3
and DDR4 DRAM contents. Although multiple attempts
to replicate cold boot attacks on scrambled memory failed
in the past [7], [8], recent work has demonstrated a cold
boot attack that bypasses DDR3 DRAM scramblers on 2nd

generation Intel Core (SandyBridge) CPUs [9].
Our study reveals that DDR4 memory scramblers have

been redesigned in Intel’s 6th generation CPUs in a man-
ner that provides enhanced data obfuscation over previous
generation DDR3-based scramblers. While this enhanced
design is resistant to attacks that have been demonstrated in
the past, it is certainly not impenetrable. In this paper, we
reveal details of the first DDR4-based cold boot attack that is
able to successfully extract AES keys from a DDR4 DRAM
connected to an Intel Skylake processor. We demonstrate
this attack by extracting VeraCrypt/TrueCrypt master keys.

Our goal in this work is not to criticize the state of
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memory scramblers, but to make two important observa-
tions: i) DRAM (including DDR4) continues to be sus-
ceptible to cold boot attacks as the scramblers do not
provide sufficient confidentiality guarantees, and ii) modern
high-throughput stream ciphers (e.g., ChaCha8, CTR mode
AES-128) coupled with high-speed ASIC implementations
make it practical to create strongly encrypted memories that
are impervious to cold boot attacks without incurring any
performance penalty. In Section IV, we detail latency, area,
and power trade-offs of memory encryption engine designs
based on RTL simulation and synthesis. As future-generation
memories will utilize dense non-volatile storage, it is be-
coming increasingly crucial to employ strong encryption to
safe-guard the integrity of data.

In summary, we make the following contributions:

• Despite the introduction of increasingly advanced mem-
ory scramblers (e.g., DDR3 to DDR4), we show that
these interfaces continue to be vulnerable. We demon-
strate data recovery from a scrambled DDR4 DRAM,
and we show how encryption keys can be stolen by
descrambling memory.

• We demonstrate memory scramblers can be replaced
with strong ciphers (such as ChaCha8) without intro-
ducing any performance overheads and with negligible
power overheads.

II. BACKGROUND AND MOTIVATION

A. DRAM Retention and Cold Boot Attacks
DRAMs store bits by storing charge in bit cell capacitors.

Due to substrate leakage, these capacitors can lose their
charge in 10s of milliseconds unless the system refreshes the
bit cell. For this reason, DRAMs are conventionally expected
to lose their content once a system loses power. However,
studies have shown that DRAM modules can maintain a
large fraction of their content after being powered down. It
has been demonstrated that the bit cell capacitors can retain
their charge for significantly longer periods of time (up to
minutes) when the DRAM chips are super-cooled [1], [3].

This long-term retention of DRAM content poses security
risks since an attacker with physical possession of a device
can move the DRAM module from a secure system to an
attacker-owned machine, and extract sensitive data stored
in the DRAM. In 2008, Halderman et.al. demonstrated that
DDR and DDR2 modules can retain 99.9% of the data
stored in them for minutes when they are cooled down
to -50oC using an off-the-shelf can of compressed air [3].
They exploited this fact to extract sensitive data such as disk
encryption keys from locked and suspended computers – an
attack vector now popularly known as a “cold boot attack”.

After the demonstration of cold boot attacks, other studies
have replicated the attack on additional platforms, including
Android devices [4]. Another work reproduced the results
from [3] and also demonstrated the feasibility of cold
boot attacks on DDR3-based systems that do not employ
any form of memory scrambling [10]. Today, many CPUs
employ some form of memory scrambling that XORs data

with keys generated during system boot-up. As a result, cold
boot attacks have become more challenging.

B. Cold Boot Attack Mitigation Measures

To prevent extraction of encryption keys via cold boot
attacks, disk encryption tools typically erase keys stored
in memory immediately after a disk is unmounted. This
approach can be applied on partitions other than the one the
operating system is running on. While this approach reduces
the attack surface, it will fail to protect disk encryption
keys if a device is acquired by an attacker while disks are
still mounted and the key is resident in DRAM (e.g., if the
machine is in sleep mode while the attacker acquires it).
It should be noted that even disk encryption tools such as
BitLocker that store encryption keys within trusted platform
modules (TPMs) are still susceptible to cold boot attacks
as the expanded keys for mounted volumes are cached in
DRAM until the drive is unmounted or until the system is
cleanly shutdown [11].

Solutions that store encryption keys exclusively in CPU
registers have also been proposed [12], [13]. Loop-Amnesia
[12] stores encryption keys in model-specific registers that
are typically used by performance counters. Similarly, Ten-
sor [13] leverages x86 debug registers for storing keys. These
solutions require a patched operating system to prevent user-
space access to these otherwise freely accessible registers,
as they are now storing sensitive keys. Such approaches are
capable of protecting disk encryption keys, but they typi-
cally suffer performance impacts since round keys must be
generated before any encryption operation and subsequently
erased. Previous work has shown that expanded round keys
greatly simplify the task of identifying keys in memory [3],
and thus, they should not reside in memory. However, due
to the lack of protected on-chip storage and the limited size
of registers, a large amount of sensitive data still remains in
main memory, at least for a limited time, unprotected.

Full memory encryption techniques, both in hardware and
software, have been suggested [14], [15]. The new Intel
Software Guard Extension (SGX) includes hardware support
for maintaining confidentiality and integrity of data stored in
DRAM by employing strong encryption (AES) and message
authentication codes (MACs). Unfortunately, SGX has been
shown to incur significant performance overheads [16]. This
makes such high-security solutions undesirable for latency-
sensitive and bandwidth-intensive applications.

For protecting performance-sensitive applications, we
need to have a solution that relaxes the security guarantees
of SGX in return for better performance. We discuss these
trade-offs in Section IV. The scramblers analyzed in this pa-
per, albeit an extremely weak form of encryption, are a step
in this direction. AMD has also disclosed that its upcoming
CPUs will support full-memory AES encryption [17] but the
performance impacts have not yet been disclosed.

Finally, newer machines with compact form factors come
with their DRAM chips directly soldered on the mother-
board. While this can make attacks more cumbersome, it
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Figure 1: High-level View of Memory Scrambling. The

scramble/descramble process is symmetric and portions of the

physical address bits and a seed (generated at boot time) are used

by the pseudo-random number generator (PRNG) to generate 64-

byte keys.

does not fully deter them. A determined attacker can still
carefully desolder the DRAM modules or boot from external
media (potentially after flashing the BIOS to enable boot
from external media).

C. DDR3 Memory Scramblers and Their Limitations
In older DDR and DDR2 systems, the CPU stores data

in memory in plaintext form. This made capturing memory
contents straightforward. With the introduction of high-
speed buses however, the scrambling of DRAM data was
introduced to improve signal integrity and reduce power
supply noise [5].

DRAM traffic is not random and successive 1s and 0s can
be observed on the data bus under normal workloads. As
a result, energy can potentially be concentrated at certain
frequencies or all the data lines can switch in parallel
resulting in high di/dt (current fluctuations). The noise
created by these phenomenon can affect signal integrity and
power delivery. The Intel Core processor datasheets [6] state
that by randomizing the DRAM data, potentially dangerous
di/dt harmonics are eliminated. Consequently, the overall
power demand of the bus becomes largely uniform.

Over time, however, these scramblers have been adapted
to also provide data obfuscation, in particular with the
introduction of scrambler seeds that change after each re-
boot. Another Intel product datasheet [18] states that its
integrated memory controller has a “DDR Data Scrambler
to reduce power supply noise, improve signal integrity and
to encrypt/protect the contents of memory.” These data ob-
fuscation features thwart straightforward cold boot attacks.

Figure 1 provides a high level model of the memory
scrambling unit available in current Intel CPUs. It is very
similar to a symmetric encryption scheme. Before data
leaves the CPU, it is XOR’d with pseudo-random numbers.
We have observed these pseudo-random numbers to be a
function of the address bits and a pseudo-random number
generated at boot time. When data is read back from DRAM,
it is XOR’d with the same pseudo-random number to recover
the original data.

While Intel’s datasheets do not provide any additional
details about their DDR3-based data scrambler architecture,
their 2011 publication [5] discloses that Linear Feedback
Shift Registers (LFSRs) are used as pseudo-random number
generators (PRNGs) by the scrambler implemented in the

Westmere microarchitecture. An LFSR is a simple hard-
ware component commonly used to generate pseudo-random
numbers. It consists of a shift register and a feedback
function that sets the leftmost bit of the shift register. The
feedback function is conventionally an XOR of some of the
bits of the shift register. Different random number sequences
can be generated by varying the initial state of the LFSR,
register width, and the bits that are XOR’d together. The
Intel publication [5] also discloses that the LFSRs are seeded
using a portion of the address bits. This reduces correlations
between memory blocks containing the same data values.

Recent successful attempts to reverse engineer Intel’s
DDR3-based scrambler revealed a number of characteristics
of the scrambler that led to a successful cold boot attack
of a DDR3-based system [9]. It has been shown that only
16 distinct keys are generated per memory channel for
scrambling data. These keys are reused numerous times
to scramble the entire memory space, thus creating the
possibility of correlations between memory blocks with the
same data (see Figure 3b).

The most important property that enables bypassing of
DDR3 scramblers stems from the fact that re-reading data
from a scrambled memory after reboot (or using a second
identical CPU) factors out (cancels out) portions of the
keystream. As a result of this factoring, the entire memory
will appear as having been scrambled using a single key
(see Figure 3c). This essentially ends up resembling a
block cipher operating in electronic codebook (ECB) mode.
This clearly makes, de-scrambling DRAM using a second
identical system significantly straightforward.

The DDR4 controllers that we studied in this work
eliminate this property. However, as we will demonstrate,
they continue to be susceptible to cold boot attacks. Our
study reveals that while additional levels of obfuscation have
been introduced for DDR4 interfaces, the protections are still
weak enough to permit recovery of sensitive data via cold
boot attacks.

III. COLD BOOT ATTACKS ON DDR4

In this section, we present a successful cold boot attack
on an Intel Skylake-based system with DDR4 DRAM. In the
first subsection, we detail our experimental framework for
analyzing scramblers and implementing cold boot attacks.
We then present our understanding of the DDR4 scramblers
based on our analysis efforts, and finally we give details
of a successful recovery of a VeraCrypt/TrueCrypt AES
encrypted drive volume key through a cold boot attack.

A. Analysis Framework

Since the scramblers implemented in modern CPUs are
not publicly documented, we needed to empirically analyze
the data transformations applied by the memory controller
before attempting to identify its limitations. For this study,
we analyzed data stored by the DDR4 memory controllers
integrated in Intel’s 6th Generation Core Processors. For
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CPU Model Microarchitecture Launch Date

i5-2540M (DDR3) SandyBridge Q1, 2011
i5-2430M (DDR3) SandyBridge Q4, 2011
i7-3540M (DDR3) IvyBridge Q1, 2013

i5-6400 (DDR4) Skylake Q3, 2015
i5-6600K (DDR4) Skylake Q3, 2015

Table I: CPU Models of Tested Machines. In this paper, we

analyzed the DDR3 and DDR4 based memory scramblers of the

listed processors. We present a successful cold boot attack on the

listed DDR4-based systems.

comparison purposes, we also analyzed scramblers in mul-
tiple generations of DDR3 controllers. We performed this
analysis on multiple notebooks and a desktop computer. The
CPUs we have analyzed are given in Table I.

All data that is eventually written to DRAM passes
through the scrambler. Similarly, all data that is read by
software is first passed through the descrambler and reg-
ular software cannot see the raw scrambled data. This
scrambling/descrambling algorithm is implemented inside
the memory controller, which cannot be directly accessed.
Hence, we needed to devise a mechanism for capturing and
observing the raw output of the memory scrambler. We did
this using two approaches. For the DDR4 DRAMs, we relied
on a motherboard that enabled us to switch the scramblers
on and off through the BIOS configuration menus. However,
the DDR3-based systems we used for comparative analysis
do not expose a mechanism for controlling the scrambler.
Hence, we relied on an external FPGA-based system to
directly access memory contents. On the FPGA board we
can read and write any raw (unscrambled) data. For our
experiments, we used the Xilinx VC709 board with Virtex-
7 FPGA to write unscrambled data to the DRAM.

To extract the scrambler keys, we implemented a “reverse
cold boot attack” on a memory filled with all zeros. We
use the mechanisms we just described to write unscrambled
zeros to a DRAM module. Given that the final step of
scrambling is XOR’ing the scramble key with the data, we
can discover the keys by initially filling all memory with
unscrambled zeros and then re-reading the data with the
scrambler turned-on. In this case note that when the zeros
are read back through the descrambler, it will attempt to
descramble the data using the scrambler keys and we are
actually reading the scrambler keys themselves (i.e., 0⊕key).
Based on this approach, we extract the scrambler keys using
the following steps:

1) On a system where scrambling is disabled, we fill the
entire memory with raw (unscrambled) zeros.

2) We freeze the DRAM and transfer it onto the mother-
board of the system we are analyzing.

3) We boot scrambled system and read the raw zero values
from memory using our custom GRUB module that
runs on the bare hardware.

The resulting memory image retrieved by the GRUB
module is filled with scrambler keys (since a scrambler
key XOR’d with zero yields the key). The program we run

Figure 2: Cold Boot Attack on DDR4 DRAM. This photo

shows the DRAM in one of our DDR4-based systems. The DRAM

is filled with data scrambled by the memory interface of an Intel

Skylake-based CPU. The memory has been cooled to −25◦C, and

it will next be moved to a separate system where its contents will

be descrambled.

to extract the memory dump has no operating system or
virtual memory manager running underneath it. Hence, we
have full view of DRAM contents while introducing minimal
pollution to the memory contents. Note that this procedure
is the reverse of a cold boot attack, since in this situation
we want to inject known data into a scrambled system.

Instead of filling the DRAM with zeros, we can alterna-
tively begin by allowing the DRAM to fully decay to its
ground state. We can then read out the value each DRAM
block assumes at this ground state with the scrambler turned
off. Note that portions the DRAM cells decay to a zero while
others decay to a one. After this initial “profiling” stage, we
can boot into a scrambled system with the fully decayed
DRAM and read out this known data (i.e., the ground state
values) through the scrambler. Unlike the technique where
we fill the memory with zeros, we do not have to worry
about bit decay that might occur in midst of the experiment.

Later in our research, we acquired a DDR4-based moth-
erboard that allowed us to reboot an initially scrambled
machine with the memory scramblers turned off – without
destroying the scrambled DRAM contents from the previous
boot cycle. Hence we were able to study the data transforma-
tions made by the scrambler by simply writing scrambled
data to memory and reading it back out on the next boot
cycle with the scrambler turned off. It should be noted that
this setup was used to speed up our analysis, and the cold
boot attacks detailed later in this section were indeed tested
by transporting a frozen DDR4 DRAM across two machines.
Figure 2 shows the frozen DDR4 DRAM on the scrambled
machine’s motherboard, prior to being pulled out and re-
socketed into the motherboard of a machine with a disabled
scrambler.

B. Analysis of a DDR4 Scrambler

Using the framework detailed in the previous section, we
extracted the scrambler keys used by the CPUs we analyzed.
After analyzing the extracted keys and their characteristics
throughout memory and between subsequent boots of the
system, we were able to make the following observations
for the DDR4 memory scramblers in Intel’s Skylake CPUs:
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• A memory channel is scrambled using a total of 4096
distinct 64-byte keys (in contrast to just 16 keys in the
DDR3-base memory systems). While visible correlations
could exist for the same data in different 64-byte blocks,
their probability of occurrence compared to DDR3-based
DRAM is reduced by a factor of 256. This effect can be
seen by comparing Figures 3b and 3d.

• These 4096 keys generated for every channel are all reset
after system reboot. However, BIOS from certain vendors
do not reset the scrambler seed every boot cycle and the
same set of scrambler keys are reused after reboot.

• Unlike older DDR3-based scramblers, reading back data
on an identical machine after reboot (i.e., after the scram-
bler is reset) does not result in the entire memory being
scrambled with a single 64-byte key. This can be seen
by comparing Figures 3c) and 3e). That is, the XOR of
all the corresponding current keys and the previous keys
does not result in a single universal 64-byte key. As such,
cold attacks devised for scrambled DDR3 DRAM are not
applicable to Intel Skylake based DDR4 systems as they
relied on discovering a single 64-byte universal key.

• The scrambler keys appear to be generated using a com-
bination of a scrambler seed generated at boot time by
the BIOS and portions of the physical address bits. Con-
sequently, different memory blocks that share a scrambler
key continue to share a scrambler key after reboot.

To descramble a DDR4 DRAM during a cold boot attack,
we need a mechanism to recover the scrambler keys solely
from data captured out of a scrambled DRAM. Since a zero
value XOR’d with the scrambler key will result in the key
itself, memory blocks with zeros written to them will contain
the actual scrambler keys. It has been shown that zeros
occur more frequently than most other individual values in
memory – an occurrence which has been a basis for multiple
proposed memory compression algorithms.

Therefore, the challenge lies in identifying which memory
blocks contain scrambler keys (i.e., are zero’d memory
blocks). Previous attacks on DDR3 systems only had to
extract one key for each channel and hence relied on
straightforward frequency analysis [9]. However, due to the
large number of keys at play in the newer systems, we cannot
reliably use simple frequency analysis.

The key to identifying a scrambler key in a memory dump
lies in an observation that we made regarding properties
of the scrambler keys. After extracting the scrambler keys
using the technique detailed above, we were able to identify
invariants on the scrambler keys that we used to form a
scrambler key litmus test. These litmus tests allowed us to
identify zero-filled blocks in memory images that reveal a
scrambler key. The invariants are between byte pairs in a
64-byte scrambler key.

These invariants are better understood by partitioning the
64-byte memory block into 2-byte words. In the expressions
below, K[i:j] represents bytes within a 64-byte scrambler key
starting at byte i and ending at byte j.

Using this notation we can describe relationships that hold

true within any 64-byte scrambler key:

K[i : i+1]⊕K[i+2 : i+3] = K[i+8 : i+9]⊕K[i+10 : i+11]

K[i : i+1]⊕K[i+4 : i+5] = K[i+8 : i+9]⊕K[i+12 : i+13]

K[i : i+1]⊕K[i+6 : i+7] = K[i+8 : i+9]⊕K[i+14 : i+15]

K[i+2 : i+3]⊕K[i+4 : i+5] = K[i+10 : i+11]⊕K[i+12 : i+13]

for i = 0, 16, 32, 48 (i.e., for each 16-byte aligned words)

While it is possible to setup a system of boolean equations
using the above expressions and attempt to find candidate
solutions for the unscrambled text, we have found that
approach to be computationally intensive. Instead, we use
these expressions as a litmus test to check if a given memory
block in a true DDR4 memory dump is a likely 64-byte
zero-value block (thus being a scrambler key exposed in the
memory dump). Even on a heavily loaded system, we were
able to mine all scrambler keys by running the tests on less
than 16MB of the memory dump. Consequently, a small
memory dump can quickly produce all of the keys used.
These litmus tests are still valid and can extract keys required
for descrambling even when data is read back through a
scrambler with a different set of keys. As a result, an attacker
does not require a machine with a disabled scrambler.

It should be noted that portions of the bits stored in the
DRAM can decay while the DRAM is being transported to
the attacker’s machine. We will discuss how we tolerate such
data loss in the next subsection.

Key Idea 1: The DDR4 scrambler generates 4096 distinct

scrambler keys for each channel. These keys can be mined

from a memory dump by testing memory blocks against a set

of litmus tests. These tests can be performed in a manner that

is resilient to modest bit flips.

C. Disk Encryption Key Recovery from a DDR4 Memory

We now turn our attention to designing a cold boot
attack on a Skylake-based DDR4 system. In this attack, the
scrambled memory dump is obtained by extracting a frozen
DDR4 DRAM from the secure system, and placing it in a
system with a disabled scrambler where it can be dumped to
disk. The proof-of-concept attack we present here focuses on
recovering the AES encryption keys, specifically those used
to decrypt a secure TrueCrypt/VeraCrypt disk volume on a
Linux machine. However, it can be extended to extract any
other information.

Attack Model: The attack we present here assumes
the attacker has no knowledge of which memory blocks
share the same scrambler key, and the attacker has no
specific knowledge of the unscrambled contents in the
scrambled memory. These assumptions helps to demonstrate
that simple permutations of the random number generators
and key mapping schemes (as different generations of DDR3
controllers have done in the past) would not affect this
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(a) Original Image
(b) Scrambled DDR3 Data (c) Scrambled DDR3 Data

Read Back After Reboot
(d) Scrambled DDR4 Data (e) Scrambled DDR4 Data

Read Back After Reboot

Figure 3: Visual Comparison of DDR3 and DDR4 Scramblers. Due to the larger key pool used in the Skylake DDR4 scramblers,

repeated data in memory reveal fewer correlations compared to DDR3 (compare (b) and (d)). Additionally, unlike DDR3, portions of the

key are not factored out in the DDR4 scramblers when data is loaded back using a different seed (compare (c) and (e)). Overall, DDR4

memory achieves better data obfuscation.

attack’s ability to recover sensitive information. If a second
machine is used for dumping the memory image (instead of
rebooting the same machine), then the attacker must use a
CPU that is the same generation as the one being attacked.
This restriction is important as different generations of Intel
CPUs can have different physical address to channel, rank,
bank, and row mappings. As noted above, the scrambler on
the attacker’s machine or on the machine being attacked does
not need to be turned off when capturing memory images.

Like previous cold boot attacks on unscrambled memory
systems (e.g., DDR and DDR2), we search for an expanded
AES key, which has special properties that allow it to be
easily distinguished from all other data in the system [3].
Our search, however, is complicated by the fact that an
AES round keys can span four 64-byte memory blocks,
thereby requiring us to guess four different scrambler keys
from a total of 4096 possibilities (8192 for a dual channel
system) to fully descramble the keytable. If brute forced,
this would result in 248 different combinations for each
set of four memory blocks on a single channel system. To
work around this limitation, we modified the algorithm in
[3] to recover AES keys from a scrambled memory without
having to descramble more than a single 64-byte block at a
time. Fortunately (for the attacker, and unfortunately for all
else) we can test if a given 64-byte memory block contains
portions of the AES round keys. Thus, we can form an AES
key litmus test for a 64-byte memory block that, if it holds
true, tells us if we are in middle of contiguous memory
blocks that contain AES round keys.

Specifically, our attack algorithm works as follows on a
scrambled DDR4 memory dump:

1) Scan the memory image for 64-byte aligned, zero-filled
memory blocks that reveal scrambler keys directly. These
candidate keys, K, are located when they pass the
scrambler key litmus test detailed in previous section.
Note that not all of the candidate keys K are scrambler
keys. However, many of them are and those that occur
more frequently are likely keys.

2) Using the candidate scrambler keys, K, gathered in the
previous step, descramble individual memory blocks in
the dump with all keys K, looking for descrambled
memory blocks that pass the 64-byte block AES key
litmus test (explained in detail below).

3) For all descrambled memory blocks that pass the 64-
byte block AES key litmus test (Si,Kj), repeat Step 3
on neighboring blocks until a complete set of AES round
keys have been located.

4) When a complete set of AES round keys has been found,
recover the secret AES key from the head of the table.

AES Key Litmus Test: The standard AES algorithm can
operate with a key length of 128, 192, or 256 bits. However,
the key supplied to the algorithm is expanded to form a
longer key using an algorithm that only depends on the key.
This expansion is necessary since the algorithm encrypts
data by applying a round function multiple times, using a
different key each time. For example, in AES-256, a 256-bit
key is expanded to generate 16-bit keys for each of the 14
rounds – forming a total of 240 bytes. These round keys are
normally computed once and stored in memory.

The AES key search algorithm described in [3] works by
sliding a search window across a stream of bytes looking
for an expanded AES key. However, this algorithm assumes
the full memory image is descrambled ahead of time. As a
result, it picks 256-bits of data (for AES-256) and applies the
standard key expansion algorithm. Similar to their algorithm,
we rely on the contiguous storage of round key in memory
for recovering keys. However, we do not require the memory
image to be fully descrambled for the algorithm to work. Our
modified algorithm is based on one straightforward insight:
in a contiguous memory region containing AES round keys,
at least 3 consecutive round keys will reside in a 64-byte
memory block, regardless of how the key is aligned in
memory. An example is shown in Figure 4. Except the first
memory block, all the others contain 3 full round keys (e.g.,
the second memory block in the figure contains complete
keys for rounds 4, 5, and, 6). If the data structure storing

318



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Do 12 Key 
Expansions

Approx./Exact
Match?

…... ….

Descramble using 
all keys 4 5 6 xx

Candidate 
Descrambled Blocks

64 B Block

Figure 4: Scanning Memory for AES Round Keys. Our

attack locates the AES round keys used to decrypt the disk. To

locate the round keys, we descramble a 64-byte block using all

(thousands) of the candidate scrambler keys. If the block contains

portions of AES round keys, it will be possible to successfully run

at least one iteration of the AES key expansion algorithm (since

three round keys fit in 64 bytes). Since we do not know which

three round keys lie in the block, we need to try all 12 possible

expansions (e.g., 1,2,3 and 2,3,4, etc.).

the key happens to be aligned to 64 byte boundaries, 4
round keys would end up in a single block. For all other
cases, however, 3 of the keys would appear unfragmented
in a single memory block.

Due to this guarantee, it is possible to check if a sin-
gle descrambled memory block is storing portions of an
expanded encryption key. We first create descrambled can-
didate blocks by XOR’ing a scrambled memory block with
all the candidate scrambler keys. Then, for each candidate
descrambled block, we take 256 bits of data (with varied
offsets) and pass it through the key expansion algorithm.
Since we do not know which round keys we are going
to encounter, we cannot simply apply the standard key
expansion algorithm. Instead, we do all 12 possible partial
expansions for AES-256 by executing the key expansion
algorithm starting at each of the 12 different rounds. The
expansion results are then checked against the stream of
bytes adjacent to the 32 bytes we just expanded. The fact
that multiple contiguous blocks will pass this check when
an expanded key is encountered enables us to be resilient
to bit decay that might have occurred while acquiring the
memory image.

Once we encounter a series of contiguous memory blocks
containing AES round keys, we check blocks at the bound-
aries to extract any remaining bytes that are part of the
key. In Figure 4 for example, bytes from keys for rounds
1 and 2 need to be extracted from the memory block that
appears immediately before the group of memory blocks we
have identified. This step might not be necessary depending
on the alignment of the data structure. By performing this
scan on the memory dump, we were able to successfully
extract AES-256 keys. For AES-128 and AES-192, we can
run the same algorithm using their respective key expansion
algorithms.

Tolerating Data Loss: Due to the possibility of bit
decay while transferring cooled DRAM, in all the algorithms
described above, we measure hamming distance to test

equality instead of relying on a simple bit-by-bit comparison.
Additionally, since a single scrambler keystream appears
multiple times inside a memory dump, we are able to filter
out modest bit flips with minimal effort.

Attack Performance: Our implementation speeds up
the search process by leveraging the Intel AES instruction
set extensions (AES-NI). AES-NI provides us with hardware
support for performing fast key expansion. Using this algo-
rithm we were able to scan 100MBs of memory using a
single core in just 2 hours. Furthermore, since the task is
fully parallelizable, we can analyze gigabytes of data in a
matter of hours using multiple machines. For example, using
a machine with an eight-core Intel Xeon D1541 CPU, we
are able to fully search an 8 GB DDR4 DRAM image in
just over 21 hours.

D. Physical Characteristics of DDR4 DRAM

DRAM modules manufactured today are much denser
than the DRAMs originally attacked in [3]. To assess the
feasibility of cold boot attacks on today’s denser and smaller
components, we measured the retention time of five DDR3
and two DDR4 modules from various manufacturers. At
normal operating temperatures, a significant fraction of the
data is lost within 3 seconds of losing power. To measure
retention characteristics at reduced temperatures, we sprayed
the DRAM with an off-the-shelf compressed gas duster
to super-cool them. The super-cooled the DRAMs reached
a temperature of approximately −25◦C. In all cases, we
observed that the modules are capable of retaining 90%-
99% of their charges if transferred to another machine in
approximately 5 seconds after being unplugged from a live
system. Interestingly, one of the DDR3 modules we tested
leaked data faster than the newer DDR4 modules. The
algorithms we presented in this work are resilient to these
modest bit flips.

It should be noted that DRAM manufacturers cannot
reduce the “volume” of capacitors beyond a 10s of femto
Farads without compromising reliability or significantly
increasing the DRAM refresh rate (which has remained
fixed over many previous generations of DRAM). For this
reason, we believe that DRAM modules will continue to be
susceptible to cold boot attacks for the foreseeable future.
More importantly, the emergence of non-volatile DIMMs
that fit into DDR4 buses is going to exacerbate the risk of
cold boot attacks. Hence, strong memory encryption is going
to be more crucial on these systems.

IV. REPLACING SCRAMBLERS WITH STRONG CIPHERS

Our results demonstrate that current memory scramblers
cannot provide meaningful protection against cold boot
attacks since they use PRNGs that are not cryptographically
secure. On the other hand, replacing memory scramblers
with cryptographically strong cipher engines (e.g., ChaCha,
AES) can provide significantly better protection against cold
boot attacks, since any cold boot attack would require brute-
force decryption of the strong cipher. Both strong encryption
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and scrambling aim to transform data into highly random
bit streams. Hence, cipher engines will also mitigate the
electrical problems that led to the initial introduction of
memory scramblers (see Section II-C). By definition, a
secure encryption algorithm is indistinguishable from ran-
domly generated data, which is the desirable characteristic
of data being transmitted on a high-speed bus.

Encrypting memory contents is going to be even more
important in the near future due to the imminent adoption
of dense non-volatile RAM (NVRAM) DIMMs [19]. These
DIMMs are being designed as a stand-alone storage or as
a hardware managed backing store for DRAMs. In either
case, these emerging memory technologies can hold many
secrets, and the attacker would not even need to cool down
the modules before transferring data to a separate machine.

A. State of Memory Encryption in Current Products
CPU vendors, most notably Intel and AMD, have started

integrating memory encryption modules into their products
[6], [17]. These security solutions can effectively shutdown
cold boot attacks.

However, one major concern that arises with the intro-
duction of strong memory encryption into a system is that it
might incur extra latency on DRAM reads. For example, it
has been shown that the strong confidentiality and integrity
guarantees provided by Intel’s Software Guard Extension
(SGX) come with a performance penalty ranging from a
few percents to 12x depending on the access pattern and
working set size [8], [16]1. This significant overhead is partly
due to the fact that SGX augments strong encryption with
integrity checking and code isolation, and there is no mech-
anism for software developers to selectively disable some
of these features. Furthermore, strong memory encryption is
employed only for applications that explicitly setup a secure
memory region using the new SGX instruction set. The need
for software modification and the associated performance
overhead with solutions such as SGX can possibly limit the
number of applications that leverage such strong protections.

Our aim in this section is to show that it is possible
to replace memory scramblers with low-power, low-latency,
and high-throughput cipher engines that introduce zero extra
latency on memory reads. By forgoing integrity checking
and replay attack protection afforded by Intel SGX, we
show that is possible to provide protections against cold boot
attacks for the entire memory with no performance overhead.

In addition to SGX there have been multiple proposals
to enforce integrity, confidentiality, and oblivious execution
[20]–[22]. The optimization and overhead exploration we
discussed in this paper would complement such efforts that
target stronger attack models beyond cold boot attacks.

B. Low Overhead Memory Encryption
In this section, we argue that power-efficient cipher en-

gines can be used to transparently replace memory scram-

1As of this writing, there is no publicly available performance data for
AMD’s upcoming memory encryption implementation
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Figure 5: Minimizing Decryption Overhead. The key to

minimizing memory cipher overheads is to avoid serializing mem-

ory access and cryptography and to instead overlap cryptography

with memory access. Stream ciphers (e.g., AES CTR) make it

is possible to generate the keystream in parallel with accessing

memory. If the keystream generation completes within the time

required to transfer data from a DRAM row buffer (i.e., the fastest

DRAM access), there will be no exposed latency for strongly

encrpyted memory. Our analyses show that there are modern crypto

engines that are indeed fast enough to have zero exposed latency.

blers in commodity processors without incurring any perfor-
mance overhead. While the encryption scheme we analyze
here cannot prevent bus snooping and memory replay at-
tacks, it is sufficient for preventing any form of cold boot
attack.

Encryption Schemes: We consider two candidate ci-
phers to replace memory scramblers: AES and ChaCha (8,
12 and, 20 rounds). AES has been the standard cipher
for most applications and hardware vendors already have
hardware IP for it, making it an attractive candidate. On
the other hand, ChaCha20 [23] is gaining popularity due
to its strong security guarantees and higher throughput on
systems that do not provide AES hardware acceleration. The
fact that a pure software implementation of Chacha runs
faster than a software implementation of AES has made
it very attractive for mobile devices. In fact, for the past
two years, nearly 100% of HTTPS connections between
Android versions of Chrome and Google have been using
ChaCha20 [24]. Two alternative ciphers with a reduced
number of rounds, ChaCha8 and ChaCha12, have also been
designed for use in systems that are willing to forgo the
extra security margins provided by ChaCha20 in return
for reduced computational complexity and further increased
throughput [23]. Although there are numerous fast stream
ciphers that have been proposed in the past, we do not
consider them here as they have not undergone the rigorous
public cryptanalysis that AES and ChaCha has endured.

AES-CTR and ChaCha operate as counter-based stream
ciphers, permitting us to perform keystream generation with-
out having the corresponding plaintext or ciphertext. Instead
of encrypting the block directly, these ciphers encrypt an
incrementing counter, which is then XOR’d with the plain-
text to produce the ciphertext. This mode of operation is
particularly attractive for our application because decryption
could proceed in parallel with DRAM access. Before we
delve into the hardware design trade-offs, we describe how
the ciphers were setup.

• AES: We use AES in counter mode, with the physical
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address as a counter, and with a nounce2 and a key
generated at boot time. A memory block in DDR3 and
DDR4 is 512-bits, which is four times the size of an
AES block. To encrypt a memory block we need to
generate four key streams using four different counter
values. Since the hardware module can be pipelined, it
is possible to generate the four key streams using a single
hardware module with only one cycle of delay between
encryption/decryption of each 16-byte blocks.

• ChaCha: Similar to the above scheme, we use the physi-
cal address as a counter, along with a key generated at boot
time. In addition to a counter, the ChaCha cipher requires
a separate nounce. For this nounce, we also rely on the
availability of a boot-time random number generator.

Threat Model and Security Guarantees: The above
scheme uses a fixed nounce and counter for repeated writes
to a single memory block. However, each memory block is
encrypted using a unique nounce or counter. This results in
the following guarantees and weaknesses:

• Cold Boot Attacks: Since a unique counter value is used
for each memory block, an attacker looking at a single
snapshot of memory will see memory blocks encrypted
using different keystreams. No memory correlation will
exist and decrypting memory without knowledge of the
AES key will be intractable.

• Bus-Snooping Attacks: An attacker that is able to monitor
the memory bus can observe multiple reads and writes
to the same memory block. And since the nounce for a
given physical address is fixed, the attacker can acquire
multiple blocks encrypted using the same nounce and
counter. Consequently, an attacker could replay these
recorded blocks without detection, thus, our approach does
not protect the system against bus replay attacks. More
capable technologies such as Intel’s SGX can prevent such
attacks at the cost of reduced performance [25], [26].

Minimizing Encryption Overhead: The most straight
forward way to encrypt/decrypt bus transactions is to per-
form the keystream generation when data arrives in the
memory controller. The main problem with this approach
is that it introduces unacceptable delays on memory reads.
Delays on memory writes are tolerable as the CPU can
proceed with other tasks while stores are being performed.
It is crucial that we reduce decryption delays since memory
read latency is one of the major bottlenecks in today’s
systems.

Multiple works in the past have explored schemes to
overlap cryptographic computations with memory reads
[15], [20], [27]–[31]. One way to reduce the overhead
of decrypting memory reads is to overlap the process of
keystream generation with data transfer on the bus. Figure
5 shows the final portion of the memory read process in the
DDR protocol. After a row has been read into the row buffer,

2A nounce is an input value that is not supposed to be used more
than once. A unique nounce is typically generated for every encryp-
tion/decryption operation.

the memory controller sends column access (CAS) signals.
The amount of time it will take for the DRAM module to
place the requested columns on the bus is deterministic and
fixed for the specific DRAM module.

We leverage the deterministic time window that is avail-
able between a DRAM read request and a response from
DRAM to hide the overhead incurred by memory encryp-
tion. This time window can be used to perform keystream
generation, which runs independent of the data for both
AES in counter-mode or ChaCha. If the entire keystream
generation can be completed within this time window, then
the CPU will not experience any delays for implementing
fully encrypted memory.

Analyzing the Impact of Full Memory Encryption:
To quantify the time window available for key expansion,
we looked at the timing characteristics of DDR4 DRAM
modules. According to the DDR4 standard there are only
9 allowable column access latencies that manufacturers are
allowed to target. All of these standard column access
latencies are between 12.5ns and 15.01ns [32]. We use these
numbers as a basis for measuring exposed latency due to
strong encryption. Implementations of alternative memory
standards such as the Hybrid Memory Cube (HMC) have
even higher transfer latency in return for higher throughput
SerDes links [33].

To evaluate the performance overhead, we must know
the keystream generation delay for the ciphers. To assess
this delay we ran RTL simulation and synthesis on efficient
AES and ChaCha implementations. Our design exploration
for AES is based on a modified version of an open-source
design [34]. We used the Synopsis Design Compiler to
synthesize the designs to a 45nm silicon-on-insulator (SOI)
technology library. Since this is a trailing edge technology,
the results we generate will be slightly pessimistic compared
to what a design might achieve in a newer silicon technology.
However, we expect the comparisons we make below with
respect to older 45nm CPUs to hold true for newer silicon
technology since both the encryption pipeline and the CPUs
will scale in a similar manner.

Hardware Design Trade-offs: Depending on different
design decisions, the encryption modules can be optimized
for latency, throughout, or low-power operation. Here, we
detail the different design decisions we made.

Speed vs Area and Power: Both AES and ChaCha
apply the same round function multiple times on a block of
data. This gives us the option to have a single hardware unit
for a round function and time-multiplex it. Such design will
result in lower throughput, but also lower power. In addition,
high-performance memory controllers can have multiple
outstanding requests. For this reason, it is advantageous to
chain multiple instances of the hardware units for the round
function. In the designs we evaluated, we have dedicated
units for each round. These units are then pipelined for
increased throughput with multiple outstanding requests.

AES Pipeline Stages: AES rounds can be implemented
with lookup tables, and this makes them amenable for faster
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Cipher
Maximum Cycles Maximum
Freq.(GHz) per 64B Pipeline Delay (ns)

AES-128 2.4 13 5.4
AES-256 2.4 17 7.08
ChaCha8 1.96 18 9.18

ChaCha12 1.96 26 13.27
ChaCha20 1.96 42 21.42

Table II: Cipher Engine Performance (45nm). This table
provides the speed of the five cipher engines analyzed. All
implementations were synthesized to a 45nm silicon-on-
insulator technology. The latencies presented here do not
include potential queuing delays.

designs. The design we used for this evaluation was adapted
from [34], and it implements the sub-byte, shift row, and
mix column steps as register look ups. The deeply pipelined
design in [34] takes 2 cycles per round, and it is capable of
running at 2.5 GHz in 45nm silicon, providing a maximum
throughput of 40 GB/s. However, we chose to pipeline the
design in a way that only takes 1 cycle per round, thereby
slightly reducing its maximum clock frequency to 2.4GHz
which reduces throughput to 39 GB/s. This slight reduction
in throughput enabled us to lower the latency of generating
a 16-byte key stream from a counter by about 50%.

ChaCha Pipeline Stages: Implementing a ChaCha
quarter round in hardware requires a chain of 32-bit adders
and XOR gates. In our design, we broke a quarter round
into 2 pipeline stages. This enabled us to clock the design
about 2 times faster (at 1.96 GHz) relative to a design where
a quarter round is a single pipeline stage. This increased the
frequency and resulted in a modest reduction of the latency.
As we will outline in our results, this frequency enables the
encryption engine to keep up with high-speed buses.

C. Results and Discussion

Cipher Engine Performance: Table II presents the
performance characteristics of the synthesized cipher en-
gines. We can see the latency that would be incurred
by these cryptographic modules is not acceptable unless
it can be hidden by overlapping the key generation with
DDR4 DRAM column reads. Since any DDR4 module
would take at least 12.5ns for a column access with a
row buffer hit, AES-128, AES-256, and ChaCha8 seem like
viable alternatives. The numbers also suggest that AES-128
would have lower latency when even compared to ChaCha8.
However, there is an advantage to using ChaCha8 under
higher bandwidth utilizations. Since AES operates on 16-
byte blocks (as opposed to 64-byte blocks in ChaCha),
we need to load 4 counters into the pipeline for each 64-
byte memory block. This property of AES can become a
disadvantage when there are numerous row buffer hits on a
single channel (i.e., under high bandwidth utilization).

To analyze the performance of the cipher engines under
high bandwidth utilization, we simulated the performance
of the modules under different loads. Higher bandwidth
utilization occurs when there are multiple row buffer hits
across different banks. In the DDR4 standard, even if we
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ChaCha8 is able to complete decryption faster than the minimum

DDR4 read delay (12.5 ns), thus, there would be no exposed latency

on encrypted DRAM reads under all loads. At lower bandwidth

utilization (i.e., fewer back-to-back reads with different keys), AES

exhibits better performance. However, as the bandwidth utilization

approaches its peak, the queuing delay starts slow AES, while

ChaCha8 continues to perform well.

might have dozens of banks on a channel, the total number
of outstanding CAS commands will ultimately be limited by
the contention on the bus. With a fast DDR4 module running
at 1.2GHz (DDR4-2400), we can theoretically have up to 18
back-to-back CAS requests, provided that there are enough
row buffer hits.

Figure 6 graphs the performance of the cipher engines
at varying levels of memory bandwidth utilization for a
DDR4-2400 module. Note that the standard CAS latencies
under DDR4 all lie between 12.5ns and 15.01ns. When the
number of outstanding requests is low, AES-128 and AES-
256 show superior performance. However, as the number
of outstanding requests increase, the queuing delay at the
input of the AES modules starts to affect the latency.
As mentioned earlier, this results from the need to feed
4 counter/nounce values into the AES pipeline for every
column read operation. On the other hand, ChaCha produces
a 64-byte keystream from a single counter/nounce. And
since this module can be clocked at least as fast as any
DDR4 bus, there will be no queuing delays incurred.

The results show that ChaCha8 and AES-128 are the
most suitable ciphers for replacing memory scramblers.
ChaCha8 is able to complete decryption faster than the
minimum DDR4 read delay under all loads. AES-128 would
also have zero exposed latency except when subjected to
excessive outstanding CAS requests. Even under maximum
outstanding back-to-back CAS requests, AES-128 would
only have a worst case exposed latency of 1.3ns.

Power and Area Overhead: To understand the power
and area overhead of replacing scramblers with strong cipher
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Figure 7: Power and Area Overhead. This figure gives

estimated area and power overheads for multiple platforms, ranging

from a low-end CPU (Atom N280) to a high-end server (Xeon

W3520). Area overheads are uniformly low, and power overheads

for the larger more capable cores are also low. The Atom CPU

overheads grow, but are mitigated for lower channel utilization.

engines, we compare the size and power consumption of
ChaCha8 and AES-128 modules against various Intel cores.
We perform a technology neutral comparison, as both the
cores and cipher engines are implemented in 45nm silicon.
Additionally, technology scaling is unlikely to change these
results, since both the cores and cipher engines would scale
in a similar manner. We make power and area comparisons
against 45nm Intel CPUs: the Atom N280 (mobile), Core i3-
330M (desktop), Core i5-700 (high-end desktop), and Xeon
W3520 (server) CPUs. We used the power profiles and die
size values stated on their respective product sheets. The
power and area results are presented in Figure 7. We assume
that there is one encryption module per-channel for each of
the comparisons. As a result, we multiplied the power and
area numbers of a single encryption module by the number
of channels in the system.

We used the Synopsis Design Compiler for power (static
and dynamic) and area estimation. For estimating the dy-
namic power, we used signal activity factors under full
bandwidth utilization, where back-to-back CAS requests are
generated whenever the bus is free. As previous work [35]
has shown that most workloads utilize only a fraction of
DRAM bandwidth, we also present power overheads for
20% utilization by scaling down the dynamic power to 20%
of the maximum dynamic power. The analysis in [35] shows
that even data intensive applications such as media streaming
only use up to 15% of DRAM bandwidth which makes our
estimates at 20% bandwidth utilization conservative.

Clearly, the overall power and area overheads for strong
encryption are very low. In all cases, the area overheads
are about or below 1%, with the expected slightly higher
overheads on the small Atom CPU. The power overheads

are all below 3%, except for the single core Atom CPU,
which experiences up to a 17% power increase under full
bandwidth utilization. This is to be expected due to the
greatly increased energy efficiency of the Atom CPU. Under
more realistic workloads, however, the power overhead of
the Atom CPU is estimated to be below 6%.

For low-power mobile devices, more energy-efficient
memory encryption can be achieved by using cipher en-
gines that have much lower performance than what we
proposed here. Such trade-off is possible as mobile-CPUs
are not likely to produce a large number of back-to-back
CAS requests as server-grade CPUs and co-processors can
potentially do.

Key Idea 2: Memory scramblers can be replaced with

strong stream ciphers such as ChaCha8. For such low over-

head ciphers, the process of keystream generation, which is

independent of the data being encrypted, can be fully over-

lapped with DRAM row buffer access – thereby completely

hiding the overhead of data decryption during memory reads.

V. CONCLUSION

With the introduction of memory scramblers in modern
processors, cold boot attacks have become more challenging,
as attackers must first descramble the contents of DRAM.
In this work, we demonstrated that the weak data obfus-
cation afforded by scramblers can be readily overcome.
We develop and demonstrate a straightforward means to
descramble DDR4 DRAM connected to an Intel Skylake
CPU by exploiting the data correlations that are created due
to the reuse of a limited number of scrambler keys. We
presented a cold boot attack that is able to extract AES
keys (including VeraCrypt/TrueCrypt master keys) from
scrambled memory. Finally, we show hardware encryption
performance results that suggest that memory scramblers
could be readily replaced with strong stream ciphers without
incurring any performance overhead. We show that ChaCha8
can fully overlap decryption with the row buffer reads in
a DDR4 DRAM module, leaving no exposed latency for
strongly encrypted DRAM. Similarly, we show that the
power overheads for implementing a strongly encrypted
DRAM are quite low. Given the increasing size of memories
and the introduction of non-volatility, memories are prone to
holding more secrets for longer periods of time. As such, it
is becoming increasingly important to protect the contents of
system RAM. If hardware vendors adopt the low-overhead
strong stream ciphers as laid out in this paper, we can
effectively defend systems against future cold boot attacks.
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