
NavigationNavigation

Detecting	cats	in	images	with	OpenCV
by	Adrian	Rosebrock	on	June	20,	2016	in	Object	Detection,	Tutorials

(source)

Did	you	know	that	OpenCV	can	detect	cat	faces	in	images…right	out-of-the-box	with	no	extras?

I	didn’t	either.

But	after	Kendrick	Tan	broke	the	story,	I	had	to	check	it	out	for	myself…and	do	a	little	investigative	work	to	see	how	this	cat
detector	seemed	to	sneak	its	way	into	the	OpenCV	repository	without	me	noticing	(much	like	a	cat	sliding	into	an	empty	cereal
box,	just	waiting	to	be	discovered).

In	the	remainder	of	this	blog	post,	I’ll	demonstrate	how	to	use	OpenCV’s	cat	detector	to	detect	cat	faces	in	images.	This	same
technique	can	be	applied	to	video	streams	as	well.

Looking	for	the	source	code	to	this	post?
Jump	right	to	the	downloads	section.

Detecting	cats	in	images	with	OpenCV
If	you	take	a	look	at	the	OpenCV	repository,	specifically	within	the	haarcascades	directory	(where	OpenCV	stores	all	its	pre-trained
Haar	classifiers	to	detect	various	objects,	body	parts,	etc.),	you’ll	notice	two	files:

Both	of	these	Haar	cascades	can	be	used	detecting	“cat	faces”	in	images.	In	fact,	I	used	these	very	same	cascades	to	generate
the	example	image	at	the	top	of	this	blog	post.

Doing	a	little	investigative	work,	I	found	that	the	cascades	were	trained	and	contributed	to	the	OpenCV	repository	by	the
legendary	Joseph	Howse	who’s	authored	a	good	many	tutorials,	books,	and	talks	on	computer	vision.

In	the	remainder	of	this	blog	post,	I’ll	show	you	how	to	utilize	Howse’s	Haar	cascades	to	detect	cats	in	images.

10 75

haarcascade_frontalcatface.xml
haarcascade_frontalcatface_extended.xml

Free	21-day	crash	course	on	computer	vision	&	image	search	engines

Cat	detection	code
Let’s	get	started	detecting	cats	in	images	with	OpenCV.	Open	up	a	new	file,	name	it	 	,	and	insert	the	following
code:

Lines	2	and	3	import	our	necessary	Python	packages	while	Lines	6-12	parse	our	command	line	arguments.	We	only	require	a
single	argument	here,	the	input	 		that	we	want	to	detect	cat	faces	in	using	OpenCV.

We	can	also	(optionally)	supply	a	path	our	Haar	cascade	via	the	 		switch.	We’ll	default	this	path	to
		and	assume	you	have	the	 		file	in	the	same	directory	as	your

		script.

Note:	I’ve	conveniently	included	the	code,	cat	detector	Haar	cascade,	and	example	images	used	in	this	tutorial	in	the
“Downloads”	section	of	this	blog	post.	If	you’re	new	to	working	with	Python	+	OpenCV	(or	Haar	cascades),	I	would	suggest
downloading	the	provided	.zip	file	to	make	it	easier	to	follow	along.

Next,	let’s	detect	the	cats	in	our	input	image:

On	Lines	15	and	16	we	load	our	input	image	from	disk	and	convert	it	to	grayscale	(a	normal	pre-processing	step	before	passing
the	image	to	a	Haar	cascade	classifier,	although	not	strictly	required).

Line	20	loads	our	Haar	cascade	from	disk	(in	this	case,	the	cat	detector)	and	instantiates	the	 		object.

Detecting	cat	faces	in	images	with	OpenCV	is	accomplished	on	Lines	21	and	22	by	calling	the	 		method	of	the
		object.	We	pass	four	parameters	to	the	 		method,	including:

1.	 Our	image,	 	,	that	we	want	to	detect	cat	faces	in.
2.	 A	 		of	our	image	pyramid	used	when	detecting	cat	faces.	A	larger	scale	factor	will	increase	the	speed	of	the
detector,	but	could	harm	our	true-positive	detection	accuracy.	Conversely,	a	smaller	scale	will	slow	down	the	detection
process,	but	increase	true-positive	detections.	However,	this	smaller	scale	can	also	increase	the	false-positive	detection	rate
as	well.	See	the	“A	note	on	Haar	cascades”	section	of	this	blog	post	for	more	information.

3.	 The	 		parameter	controls	the	minimum	number	of	detected	bounding	boxes	in	a	given	area	for	the	region	to	be
considered	a	“cat	face”.	This	parameter	is	very	helpful	in	pruning	false-positive	detections.

4.	 Finally,	the	 		parameter	is	pretty	self-explanatory.	This	value	ensures	that	each	detected	bounding	box	is	at
least	width	x	height	pixels	(in	this	case,	75	x	75).

The	 		function	returns	 	,	a	list	of	4-tuples.	These	tuples	contain	the	(x,	y)-coordinates	and	width	and	height
of	each	detected	cat	face.

Finally,	let’s	draw	a	rectangle	surround	each	cat	face	in	the	image:

Given	our	bounding	boxes	(i.e.,),	we	loop	over	each	of	them	individually	on	Line	25.

cat_detector.py

--image

--cascade
haarcascade_frontalcatface.xml haarcascade_frontalcatface.xml
cat_detector.py

cv2.CascadeClassifier

detectMultiScale
detector detectMultiScale

gray
scaleFactor

minNeighbors

minSize

detectMultiScale rects

rects

1
2
3
4
5
6
7
8
9
10
11
12

#	import	the	necessary	packages
import	argparse
import	cv2
	
#	construct	the	argument	parse	and	parse	the	arguments
ap	=	argparse.ArgumentParser()
ap.add_argument("-i",	"--image",	required=True,
	 help="path	to	the	input	image")
ap.add_argument("-c",	"--cascade",
	 default="haarcascade_frontalcatface.xml",
	 help="path	to	cat	detector	haar	cascade")
args	=	vars(ap.parse_args())

14
15
16
17
18
19
20
21
22

#	load	the	input	image	and	convert	it	to	grayscale
image	=	cv2.imread(args["image"])
gray	=	cv2.cvtColor(image,	cv2.COLOR_BGR2GRAY)
	
#	load	the	cat	detector	Haar	cascade,	then	detect	cat	faces
#	in	the	input	image
detector	=	cv2.CascadeClassifier(args["cascade"])
rects	=	detector.detectMultiScale(gray,	scaleFactor=1.3,
	 minNeighbors=10,	minSize=(75,	75))

24
25
26
27
28
29
30
31
32

#	loop	over	the	cat	faces	and	draw	a	rectangle	surrounding	each
for	(i,	(x,	y,	w,	h))	in	enumerate(rects):
	 cv2.rectangle(image,	(x,	y),	(x	+	w,	y	+	h),	(0,	0,	255),	2)
	 cv2.putText(image,	"Cat	#{}".format(i	+	1),	(x,	y	-	10),
	 	 cv2.FONT_HERSHEY_SIMPLEX,	0.55,	(0,	0,	255),	2)
	
#	show	the	detected	cat	faces
cv2.imshow("Cat	Faces",	image)
cv2.waitKey(0)

Detecting	cats	in	images	with	OpenCV Python

Detecting	cats	in	images	with	OpenCV Python

Detecting	cats	in	images	with	OpenCV Python

We	then	draw	a	rectangle	surrounding	each	cat	face	on	Line	26,	while	Lines	27	and	28	displays	an	integer,	counting	the
number	of	cats	in	the	image.

Finally,	Lines	31	and	32	display	the	output	image	to	our	screen.

Cat	detection	results
To	test	our	OpenCV	cat	detector,	be	sure	to	download	the	source	code	to	this	tutorial	using	the	“Downloads”	section	at	the
bottom	of	this	post.

Then,	after	you	have	unzipped	the	archive,	you	should	have	the	following	three	files/directories:

1.	 	:	Our	Python	+	OpenCV	script	used	to	detect	cats	in	images.
2.	 	:	The	cat	detector	Haar	cascade.
3.	 	:	A	directory	of	testing	images	that	we’re	going	to	apply	the	cat	detector	cascade	to.

From	there,	execute	the	following	command:

Figure	1:	Detecting	a	cat	face	in	an	image,	even	with	parts	of	the	cat	occluded	(source).

Notice	that	we	have	been	able	to	detect	the	cat	face	in	the	image,	even	though	the	rest	of	its	body	is	obscured.

Let’s	try	another	image:

cat_detector.py
haarcascade_frontalcatface.xml
images

1 $	python	cat_detector.py	--image	images/cat_01.jpg

1 python	cat_detector.py	--image	images/cat_02.jpg

Detecting	cats	in	images	with	OpenCV Shell

Detecting	cats	in	images	with	OpenCV Python

Figure	2:	A	second	example	of	detecting	a	cat	in	an	image	with	OpenCV,	this	time	the	cat	face
is	slightly	different	(source).

This	cat’s	face	is	clearly	different	from	the	other	one,	as	it’s	in	the	middle	of	a	“meow”.	In	either	case,	the	cat	detector	cascade
is	able	to	correctly	find	the	cat	face	in	the	image.

The	same	is	true	for	this	image	as	well:

Figure	3:	Cat	detection	with	OpenCV	and	Python	(source).

Our	final	example	demonstrates	detecting	multiple	cats	in	an	image	using	OpenCV	and	Python:

1 $	python	cat_detector.py	--image	images/cat_03.jpg
Detecting	cats	in	images	with	OpenCV Shell

Figure	4:	Detecting	multiple	cats	in	the	same	image	with	OpenCV	(source).

Note	that	the	Haar	cascade	can	return	bounding	boxes	in	an	order	that	you	may	not	like.	In	this	case,	the	middle	cat	is	actually
labeled	as	the	third	cat.	You	can	resolve	this	“issue”	by	sorting	the	bounding	boxes	according	to	their	(x,	y)-coordinates	for	a
consistent	ordering.

A	quick	note	on	accuracy
It’s	important	to	note	that	in	the	comments	section	of	the	 		files,	Joseph	Howe	details	that	the	cat	detector	Haar	cascades
can	report	cat	faces	where	there	are	actually	human	faces.

In	this	case,	he	recommends	performing	both	face	detection	and	cat	detection,	then	discarding	any	cat	bounding	boxes
that	overlap	with	the	face	bounding	boxes.

A	note	on	Haar	cascades
First	published	in	2001	by	Paul	Viola	and	Michael	Jones,	Rapid	Object	Detection	using	a	Boosted	Cascade	of	Simple	Features,	this
original	work	has	become	one	of	the	most	cited	papers	in	computer	vision.

This	algorithm	is	capable	of	detecting	objects	in	images,	regardless	of	their	location	and	scale.	And	perhaps	most	intriguing,	the
detector	can	run	in	real-time	on	modern	hardware.

In	their	paper,	Viola	and	Jones	focused	on	training	a	face	detector;	however,	the	framework	can	also	be	used	to	train	detectors
for	arbitrary	“objects”,	such	as	cars,	bananas,	road	signs,	etc.

The	problem?
The	biggest	problem	with	Haar	cascades	is	getting	the	 		parameters	right,	specifically	 		and

	.	You	can	easily	run	into	situations	where	you	need	to	tune	both	of	these	parameters	on	an	image-by-image	basis,
which	is	far	from	ideal	when	utilizing	an	object	detector.

The	 		variable	controls	your	image	pyramid	used	to	detect	objects	at	various	scales	of	an	image.	If	your	 		is
too	large,	then	you’ll	only	evaluate	a	few	layers	of	the	image	pyramid,	potentially	leading	to	you	missing	objects	at	scales	that	fall
in	between	the	pyramid	layers.

On	the	other	hand,	if	you	set	 		too	low,	then	you	evaluate	many	pyramid	layers.	This	will	help	you	detect	more	objects
in	your	image,	but	it	(1)	makes	the	detection	process	slower	and	(2)	substantially	increases	the	false-positive	detection	rate,
something	that	Haar	cascades	are	known	for.

To	remember	this,	we	often	apply	Histogram	of	Oriented	Gradients	+	Linear	SVM	detection	instead.

The	HOG	+	Linear	SVM	framework	parameters	are	normally	much	easier	to	tune	—	and	best	of	all,	HOG	+	Linear	SVM	enjoys
a	much	smaller	false-positive	detection	rate.	The	only	downside	is	that	it’s	harder	to	get	HOG	+	Linear	SVM	to	run	in	real-time.

Interested	in	learning	more	about	object	detection?

.xml

detectMultiScale scaleFactor
minNeighbors

scaleFactor scaleFactor

scaleFactor

1 $	python	cat_detector.py	--image	images/cat_04.jpgDetecting	cats	in	images	with	OpenCV Shell

Figure	5:	Learn	how	to	build	custom	object	detectors	inside	the
PyImageSearch	Gurus	course.

If	you’re	interested	in	learning	how	to	train	your	own	custom	object	detectors,	be	sure	to	take	a	look	at	the	PyImageSearch
Gurus	course.

Inside	the	course,	I	have	15	lessons	covering	168	pages	of	tutorials	dedicated	to	teaching	you	how	to	build	custom	object
detectors	from	scratch.		You’ll	discover	how	to	detect	road	signs,	faces,	cars	(and	nearly	any	other	object)	in	images	by	applying
the	HOG	+	Linear	SVM	framework	for	object	detection.

To	learn	more	about	the	PyImageSearch	Gurus	course	(and	grab	10	FREE	sample	lessons),	just	click	the	button	below:

Click	here	to	learn	more	about	PyImageSearch	Gurus!

Summary
In	this	blog	post,	we	learned	how	to	detect	cats	in	images	using	the	default	Haar	cascades	shipped	with	OpenCV.	These	Haar
cascades	were	trained	and	contributed	to	the	OpenCV	project	by	Joseph	Howse,	and	were	originally	brought	to	my	attention	in
this	post	by	Kendrick	Tan.

While	Haar	cascades	are	quite	useful,	we	often	use	HOG	+	Linear	SVM	instead,	as	it’s	a	bit	easier	to	tune	the	detector
parameters,	and	more	importantly,	we	can	enjoy	a	much	lower	false-positive	detection	rate.

I	detail	how	to	build	custom	HOG	+	Linear	SVM	object	detectors	to	recognize	various	objects	in	images,	including
cars,	road	signs,	and	much	more	inside	the	PyImageSearch	Gurus	course.

Anyway,	I	hope	you	enjoyed	this	blog	post!

Before	you	go,	be	sure	to	signup	for	the	PyImageSearch	Newsletter	using	the	form	below	to	be	notified	when	new
blog	posts	are	published.

Downloads:
If	you	would	like	to	download	the	code	and	images	used	in	this	post,	please	enter	your	email	address	in	the
form	below.	Not	only	will	you	get	a	.zip	of	the	code,	I’ll	also	send	you	a	FREE	11-page	Resource	Guide	on
Computer	Vision	and	Image	Search	Engines,	including	exclusive	techniques	that	I	don’t	post	on	this	blog!
Sound	good?	If	so,	enter	your	email	address	and	I’ll	send	you	the	code	immediately!
Email	address:

Your	email	address

DOWNLOAD	THE	CODE!

	Considerations	when	setting	up	deep	learning	hardware My	Top	9	Favorite	Python	Deep	Learning	Libraries	

Resource	Guide	(it’s	totally	free).

Enter	your	email	address	below	to	get	my	free	11-page	Image	Search	Engine	Resource	Guide	PDF.
Uncover	exclusive	techniques	that	I	don't	publish	on	this	blog	and	start	building	image	search	engines
of	your	own!

Your	email	address

DOWNLOAD	THE	GUIDE!

	classification,	haar	cascades,	object	detection

16	Responses	to	Detecting	cats	in	images	with	OpenCV

Joseph	Howse	June	20,	2016	at	6:36	pm	#	

Thanks	so	much	for	featuring	the	cat	face	cascades!	I	am	delighted	to	see	them	in	action	here	alongside	your	other	great
tutorials!

Fun	facts:

The	haarcascade_frontalcatface_extended.xml	version	uses	the	“extended”	Haar	feature	set	to	make	it	sensitive	to	diagonal
features	such	as	ears	and	whiskers.	>^-^<

Besides	the	Haar	versions,	you	will	find	an	LBP	version,	lbpcascade_frontalcatface.xml,	in	OpenCV's	lbpcascades	folder.	The	LBP
version	is	less	accurate	but	faster;	you	might	like	it	for	Raspberry	Pi	or	other	platforms	with	limited	resources.

Details	about	the	training	of	the	cat	face	cascades	can	be	found	in	my	book,	OpenCV	for	Secret	Agents,	and	in	free	presentations	on
my	website's	OpenCV	landing	page	(http://www.nummist.com/opencv/).

Nine	lives,

Joe

REPLY

Adrian	Rosebrock	June	23,	2016	at	1:34	pm	#	

You’re	the	one	we	should	be	thanking	Joe	—	you	trained	the	actual	cascades!	

REPLY

Kendrick	Tan	June	20,	2016	at	11:46	pm	#	

Hi	Adrian,	I’m	a	bit	stoked	when	I	saw	my	name	come	up	on	the	newsletter.

Anyway,	I	just	came	here	to	say	thank	you.	Your	tutorials	really	gave	me	a	firm	understanding	of	the	basics	of	computer	vision,	and
machine	learning.	Really	appreciate	your	time	and	effort.

REPLY

Adrian	Rosebrock	June	23,	2016	at	1:33	pm	#	

Hey	Kendrick!	Thanks	for	doing	the	initial	awesome	post	—	without	your	post,	the	cat	detection	cascade	would	have
totally	passed	me	by.	I	should	be	the	one	thanking	you	

REPLY

Linus	June	21,	2016	at	7:39	am	#	

Wow.
Thanks	Adrian,	this	is	so	awesome!	I’ve	thought	about	the	possibitity	of	detecting	animals	some	time	ago,	but	I’ve	never	found	a

REPLY

solution	
What	about	other	animals	(dogs	etc.)?	Are	there	also	xml	files	available?	And	is	using	this	in	a	live	camera	feed	also	possibe,	with	a
moderate	execution	speed?

Adrian	Rosebrock	June	23,	2016	at	1:29	pm	#	

As	far	as	I	know,	there	is	only	the	Haar	cascade	for	cats	—	there	isn’t	one	for	dogs.	Although	you	could	certainly	train
one.	I	would	suggest	using	HOG	+	Linear	SVM	instead	since	it	has	a	lower	false-positive	rate.

And	yes,	this	method	can	be	used	to	run	in	real-time.	Take	a	look	at	Practical	Python	and	OpenCV	for	more	details	on	running
Haar	cascades	in	real-time.

REPLY

Ranjeet	Singh	June	21,	2016	at	12:06	pm	#	

But	now	I	want	to	know	what	that	xml	file	is	?	How	it	has	been	written	?

REPLY

Adrian	Rosebrock	June	23,	2016	at	1:27	pm	#	

The	XML	file	is	a	serialized	Haar	cascade.	It	is	generated	by	training	a	machine	learning	algorithm	to	recognize	various
objects	in	images.	To	recognize	your	own	objects,	you’ll	need	to	train	your	own	custom	object	detector.

REPLY

swight	November	10,	2016	at	7:23	pm	#	

How	would	I	write	the	final	image	to	file	instead	of	displaying	to	screen?

REPLY

Adrian	Rosebrock	November	14,	2016	at	12:16	pm	#	

You	can	just	use	the	cv2.imwrite	function:

cv2.imwrite("/path/to/my/image.jpg",	image)

If	you	need	help	learning	the	basics	of	computer	vision	and	image	processing	I	would	suggest	you	work	through	Practical	Python
and	OpenCV.

REPLY

Victor	December	17,	2016	at	9:34	pm	#	

We	trained	an	LBP	cascade	with	better	time	and	accuracy	performance.	If	anyone	wants	this,	we	can	push	it	to	our
10imaging/opencv	repo	on	GitHub.

REPLY

Ridge	December	19,	2016	at	8:01	pm	#	

@Victor	–	Sure,	I’d	like	to	see	it.

REPLY

Gismo	Scha	March	15,	2017	at	8:28	pm	#	

Thanks	Adrian,	it	works!
How	can	i	extract	/	copy	the	rectangled	area	and	write	to	file?

REPLY

Adrian	Rosebrock	March	17,	2017	at	9:31	am	#	

You	would	use	NumPy	array	slicing	to	extract	the	bounding	box	and	then	use	cv2.imwrite	to	write	the	image	to	disk.	I
discuss	these	basic	operations	inside	Practical	Python	and	OpenCV.	I	would	suggest	you	start	there	if	you	are	new	to	OpenCV.

REPLY

Leave	a	Reply

Name	(required)

Email	(will	not	be	published)	(required)

Website

SUBMIT	COMMENT

Resource	Guide	(it’s	totally	free).

Click	the	button	below	to	get	my	free	11-page	Image	Search	Engine	Resource	Guide	PDF.	Uncover	exclusive	techniques
that	I	don't	publish	on	this	blog	and	start	building	image	search	engines	of	your	own.

Download	for	Free!

Deep	Learning	for	Computer	Vision	with	Python	Book

Harman	Singh	March	18,	2017	at	5:06	pm	#	

Thank	Adrian,	your	tutorials	are	great	and	fun	and	also	detects	fairly	good	but	while	deploying	this	script	on	multiple	images
with	different	size,	the	output	is	not	to	accurate.

for	example	in	1st	pic	(cat	rolled	in	paper)	i	got	2	rectangle	one	covering	the	face	and	other	on	the	nose..(to	get	1	rect,	i	adjusted
scaleFactor	to	1.715)

even	after	converting	all	the	image	to	size	still	getting	mixed	result	like	mentioned	above	and	sometimes	none.

do	i	have	to	adjust	scalefactor	everytime?	or	is	it	me	having	this	problem?

Thank	You.

REPLY

Adrian	Rosebrock	March	21,	2017	at	7:35	am	#	

This	is	a	common	problem	with	Haar	cascades	(they	are	very	prone	to	false-positives).	You	can	read	more	about	the
issue	in	this	blog	post	on	Histogram	of	Oriented	Gradients.

REPLY

You're	interested	in	deep	learning	and	computer	vision,	but	you	don't	know	how	to	get	started.	Let	me	help.	My	new	book	will	teach	you	all	you
need	to	know	about	deep	learning.

CLICK	HERE	TO	PRE-ORDER	MY	NEW	BOOK

You	can	detect	faces	in	images	&	video.

Are	you	interested	in	detecting	faces	in	images	&	video?	But	tired	of	Googling	for	tutorials	that	never	work?	Then	let	me	help!	I	guarantee
that	my	new	book	will	turn	you	into	a	face	detection	ninja	by	the	end	of	this	weekend.	Click	here	to	give	it	a	shot	yourself.

CLICK	HERE	TO	MASTER	FACE	DETECTION

PyImageSearch	Gurus:	NOW	ENROLLING!

The	PyImageSearch	Gurus	course	is	now	enrolling!	Inside	the	course	you'll	learn	how	to	perform:

Automatic	License	Plate	Recognition	(ANPR)
Deep	Learning
Face	Recognition
and	much	more!

Click	the	button	below	to	learn	more	about	the	course,	take	a	tour,	and	get	10	(FREE)	sample	lessons.

TAKE	A	TOUR	&	GET	10	(FREE)	LESSONS

Hello!	I’m	Adrian	Rosebrock.

Find	me	on	Twitter,	Facebook,	Google+,	and	LinkedIn.
©	2017	PyImageSearch.	All	Rights	Reserved.

I'm	an	entrepreneur	and	Ph.D	who	has	launched	two	successful	image	search	engines,	ID	My	Pill	and	Chic	Engine.	I'm	here	to	share
my	tips,	tricks,	and	hacks	I've	learned	along	the	way.

Learn	computer	vision	in	a	single	weekend.

Want	to	learn	computer	vision	&	OpenCV?	I	can	teach	you	in	a	single	weekend.	I	know.	It	sounds	crazy,	but	it’s	no	joke.	My	new	book	is	your
guaranteed,	quick-start	guide	to	becoming	an	OpenCV	Ninja.	So	why	not	give	it	a	try?	Click	here	to	become	a	computer	vision	ninja.

CLICK	HERE	TO	BECOME	AN	OPENCV	NINJA

Subscribe	via	RSS

Never	miss	a	post!	Subscribe	to	the	PyImageSearch	RSS	Feed	and	keep	up	to	date	with	my	image	search	engine	tutorials,	tips,	and
tricks

Install	OpenCV	and	Python	on	your	Raspberry	Pi	2	and	B+
FEBRUARY	23,	2015

Home	surveillance	and	motion	detection	with	the	Raspberry	Pi,	Python,	OpenCV,	and	Dropbox
JUNE	1,	2015

How	to	install	OpenCV	3	on	Raspbian	Jessie
OCTOBER	26,	2015

Install	guide:	Raspberry	Pi	3	+	Raspbian	Jessie	+	OpenCV	3
APRIL	18,	2016

Basic	motion	detection	and	tracking	with	Python	and	OpenCV
MAY	25,	2015

Install	OpenCV	3.0	and	Python	2.7+	on	Ubuntu
JUNE	22,	2015

Accessing	the	Raspberry	Pi	Camera	with	OpenCV	and	Python
MARCH	30,	2015

Search

Search...

POPULAR

