
A Transparent Defense Against
USB Eavesdropping Attacks

Matthias
Neugschwandtner

IBM Research – Zurich
eug@zurich.ibm.com

Anton Beitler
IBM Research – Zurich
bei@zurich.ibm.com

Anil Kurmus
IBM Research – Zurich

kur@zurich.ibm.com

ABSTRACT
Attacks that leverage USB as an attack vector are gaining
popularity. While attention has so far focused on attacks
that either exploit the host’s USB stack or its unrestricted
device privileges, it is not necessary to compromise the host
to mount an attack over USB. This paper describes and
implements a USB sniffing attack. In this attack a USB
device passively eavesdrops on all communications from the
host to other devices, without being situated on the physical
path between the host and the victim device. To prevent this
attack, we present UScramBle, a lightweight encryption
solution which can be transparently used, with no setup or
intervention from the user. Our prototype implementation
of UScramBle for the Linux kernel imposes less than 15%
performance overhead in the worst case.

CCS Concepts
•Hardware → Buses and high-speed links; •Security
and privacy → Embedded systems security; Systems secu-
rity;

1. INTRODUCTION
Attacks that leverage USB as an attack vector have evolved

in the last years, although their potential has been pointed
out a fairly long time ago [1, 15]. In the beginning, analo-
gous to first DOS viruses on floppies, USB flash drives were
merely used as a vehicle to deliver malware to potentially air-
gapped devices, as was the case with Stuxnet [5]. Combined
with an LNK exploit on shortcut files (CVE-2010-2568) in
the case of Stuxnet, attaching the flash drive immediately
launched the malware. Then efforts turned to USB itself,
and in particular to the drivers necessary to support differ-
ent USB devices. Because these drivers run in kernel mode,
vulnerabilities in them can result in a full OS compromise [8,
9]. In contrast to malware delivery, this is a more advanced
attack because it relies on the specifics of the USB stack
and applies to all USB devices, instead of merely using USB
flash drives as a delivery vehicle, which is comparable to ma-
licious download links on web pages or e-mail attachments.
Similarly, but on a different level, the increased availabil-
ity of programmable USB devices that allow control over
device specific parameters, can break the security assump-
tions of software that relies on those parameters through
impersonation [11]. A well-known example is to mount an
attack using a programmable USB device to act as a key-
board delivering keystrokes that spawn a command shell and

executes pre-programmed commands1. Similar experiments
have been conducted using smartphones [17]. Such attacks
are also one of the motivations behind BadUSB [10]. With
BadUSB, attackers that already control a host can lever-
age weak firmware update protections on some devices to
re-program them to behave maliciously when plugged into
another, victim host.

On the defense side, academic efforts have focused on lim-
iting the privileges of USB devices on the host [16], while
some manufacturers of flash drives, IronKey2 and Kanguru3

in particular, have come up with products that sign firmware
to protect USB devices against malicious firmware modifi-
cation.

However, the state of the art attacks and correspond-
ing defenses have not yet covered the USB communications
themselves. It is becoming increasingly clear that defenses
are evolving to consider USB devices as hostile, and this
means that attacks on the bus become relevant: we feel this
situation is comparable to the early days of the Internet.

Indeed, there is no need to compromise the host to mount
an attack over USB. Since data is transmitted in the clear,
an attacker with physical access can eavesdrop on the com-
munication. For example, sensitive data that is saved to a
flash drive is available in cleartext on the bus, even if the
flash drive itself encrypts the data at rest.

In this paper, we show how to intercept traffic on the bus
from the host to the device, assuming only regular physical
access to the USB bus, i.e. we do not cut wires but just
need to plug a device into an arbitrary vacant port on the
bus. At the same time, we present UScramBle, a USB
transport encryption solution to defend against such eaves-
dropping attacks. UScramBle is completely transparent to
the user and legacy devices that do not support it. We also
present a performance evaluation of our implementation of
UScramBle for the Linux kernel.

1RubberDucky http://usbrubberducky.com/
2IronKey http://ironkey.com/
3Kanguru https://www.kanguru.com/

http://usbrubberducky.com/
http://ironkey.com/
https://www.kanguru.com/

This paper makes the following contributions:

• We describe and implement a USB sniffing attack on
USB 2.0 and earlier, where a device that is connected
to a USB port eavesdrops on all (downstream) com-
munications destined to other ports on the same bus.
Unlike many previous USB attacks, this attack does
not involve the host.

• We propose a clear threat model and a simple counter-
measure that prevents this attack transparently (with
no user involvement) and in a backwards-compatible
manner: encrypting all downstream communications
(transport encryption) with a key that is sent upstream
with the first USB packet.

• We implement this countermeasure both on the host
and device sides, and show that the performance im-
pact is low.

2. BACKGROUND AND THREAT MODEL

2.1 Background
Before presenting possible USB eavesdropping scenarios

as well as our proposed countermeasure, we first introduce
relevant key aspects of the USB 2.0 Specification [3, Ch.
4.1.1].
USB is designed in a tiered star topology. Hubs are at the

center of each star and facilitate bus extensions for addi-
tional hubs or peripheral devices. The first tier contains the
host system comprising the Host Controller and the Root
Hub. The Host Controller initiates all data transfers by
polling the bus for transactions. Transactions start with a
token packet describing the type and direction of the trans-
action as well as the USB device address and endpoint num-
ber. In a given transaction, data is transferred either from
the host to a device (OUT transaction) or from a device to the
host (IN transaction). The transaction source then sends a
data packet or indicates it has no data to transfer. The
destination acknowledges the transfer or indicates an er-
ror by means of a handshake packet. Logically, the host
organizes data transfers in uni-directional pipes of differ-
ent types, namely control, interrupt, bulk, and isochronous
pipes. Devices provide endpoints for pipes, each device can
have up to 32 endpoints. Endpoint 0 is reserved for the
mandatory control pipe which serves for the exchange of
configuration information during enumeration.
Devices are organized by the device descriptor, which fore-

most contains information about the device class as well as
vendor and product to allow the host to select a suitable
driver for the device. Further, a device features one or more
logical configurations, which in turn consist of multiple logi-
cal interfaces that are associated with one or more endpoints.
The physical delivery of packets is facilitated by hubs.

Hubs extend the physical lines by converting a single up-
stream port into multiple downstream ports. The upstream
port of a hub connects it to the host while each of the down-
stream ports connects to another hub or peripheral device.
The specification mandates a particular up- and downstream
connectivity behavior for hubs as shown in Figure 1. While
upstream connectivity is point-to-point, any downstream
packet that is received on the upstream port is repeated
at all enabled downstream ports, effectively broadcasting
downstream traffic to all devices on the bus. Each packet is

Upstream Port

Downstream Ports

Downstream Connectivity Upstream Connectivity

Hub
Repeater

enabled disabled

Figure 1: USB Hub Connectivity. Downstream traf-
fic is broadcasted to all enabled downstream ports
while upstream connectivity is point-to-point.

thus inspected by each device and further processed in case
the destination address matches its own.

2.2 Threat model
We defend against an eavesdropping scenario where the

attacker has physical access to the USB bus. While from
a technical point of view the obvious option for eavesdrop-
ping might be a man-in-the-middle in-between the host and
the device(s), we assume that the attacker, to be as stealthy
and pervasive as possible, is limited to attaching as an or-
dinary device. Indeed, modifying an existing USB port or
USB hub, or modifying a victim USB device, are much less
interesting propositions to the attacker than simply insert-
ing a malicious USB device on a seldom-used, well-hidden
port.

Being an ordinary device on the bus, the attacker will see
all downstream traffic, which is broadcasted to all devices in
all tiers. However, the attacker will not have access to up-
stream traffic, which is seen only by hubs actually positioned
in-between the sending device and the host.

Defending against a passive eavesdropping attack on the
bus, we do not consider vulnerabilities in the software stack
of the host or target device.

3. ATTACK
Following the technical description of a USB hub’s inter-

nals as laid out in Section 2, we can summarize that hubs
act as extensions of the bus topology and forward down-
stream packets from the upstream port to all downstream
ports (Figure 1). This makes a sniffing attack on down-
stream traffic possible at any tier in a given topology.

3.1 Setup
To mount such an attack on a USB 2.0 bus one has to

instrument a device to collect all packets that it receives
irrespective of the destination address. However, with typ-
ical off-the-shelf USB device controllers this is not a trivial
task since they implement most of the protocol in hardware.
Configuration is done with the help of device, interface, con-
trol, and endpoint descriptors which specify all of the neces-
sary parameters for enumeration and data transfer handling.
What is left to the firmware is to manage the buffers asso-
ciated with each of the configured endpoints. This architec-
ture leaves little room to achieve the type of non-standard
device behavior which is necessary for implementing a USB
sniffer in a single low-cost peripheral.

Host Controller

Root Hub

Hub Hub

USB
Analyzer

__$ECR3T__

>

USB Downstream
USB Upstream

Control
Channel

Addr. 8Sniffing Device

Addr. 12

Addr. 6

$ECR3T

PC

ACK

Figure 2: Attack Setup. The sniffing device can
eavesdrop on all data that is sent from the host to
the device with address 12, in spite of being con-
nected to a different hub.

For our experiments, we chose to leverage dedicated USB
analysis hardware. The setup of our testbed is shown in Fig-
ure 2. In this setup, two generic USB devices are attached
at different tiers and enumerated with addresses 6 and 12,
respectively. Our sniffer consists of a dummy device enu-
merated with address 8 and a hardware USB analyzer. The
only purpose of the dummy device is to stay enumerated on
the bus, thus keeping the corresponding downstream port
at the upstream hub in an active state. This is needed be-
cause the analyzer’s inspection link in itself is transparent
to the topology and does not cause an upstream hub to en-
able the respective downstream port to the analyzer. The
traffic seen on the inspection link is visualized by an analysis
software on a PC which is attached to the analyzer via its
control interface. In our experiments we use an Ellisys USB
ExplorerTMModel 200 analyzer and the Ellisys Visual USB
Analysis software.

3.2 Attack Scenarios
A common USB use case is a scenario where potentially

sensitive files are transferred from the host computer to a
mass storage device. During this task a number of OUT trans-
actions are issued by the host carrying the content of the files
meant to be written to the device. The appropriate device
acknowledges the transactions.
Consider a case where a file containing the string $ECR3T is

written to the mass storage device enumerated with address
12, as it is indicated in the rightmost branch of Figure 2.
The OUT transactions are broadcasted downstream by the
host (solid arrows) and are thus picked up by the analyzer.
A visual impression of the corresponding packet carrying the
content of the file as shown by the Ellisys software is given
in Figure 3.
This exemplary scenario demonstrates that USB eaves-

dropping attacks are not limited to certain device classes
and apply to all application protocols. For example certain
hardware-encrypted flash drives, while supposedly offering

Figure 3: Analyzer screenshot with the OUT transac-
tion carrying the content of a file being written to a
mass storage device on the bus.

high levels of security for the stored data, expose the risk
of eavesdropping the data while in transit from the host to
the device. Similarly, a USB-to-serial conversion controller
may receive security-relevant keystroke sequences from the
user or may transport keys embedded into a firmware image
meant to be flashed onto a controller. With today’s small
laptops featuring only a limited number of I/O ports and of-
ten even lacking onboard ethernet, USB docks which provide
corresponding interfaces are common.

4. UScramBle
To defend against the USB sniffing attack, we propose

to create a one-way confidential channel from the host to
each device as part of the USB protocol. We now explain
the design choices we made and how they mitigate the USB
sniffing attack, and then detail implementation aspects of
our prototype.

4.1 Design
From the threat model in Section 2, we know that the

attacker can eavesdrop on all USB packets from the host
to the device, but cannot eavesdrop on packets from the
device to the host. In addition, the attacker is not in a
position to alter packets, or spoof either the host or the
device. To obtain a bi-directional confidential and integrity
protected channel from this setting, we only need to add
confidentiality to the downstream communication from the
host to the device.

Therefore, unlike encryption on the Internet (e.g., TLS),
where encryption protocols need to address confidentiality
and integrity protection in both directions, as well as pro-
viding authentication of either or both parties, it is possible
in this setting to use a much simpler and leaner design.

In particular, because the upstream communication (from
the device to the host) cannot be eavesdropped by the at-
tacker, this channel can be used by the device to send a key
to the host securely, thereby achieving key exchange. Next,
the USB protocol proceeds, with downstream packets being
encrypted by the host with the shared key, and decrypted
by the device upon reception.

From the cryptographic standpoint, our downstream eaves-
dropping threat model means that we need to use an encryp-
tion mode that is IND-CPA secure, i.e. ciphertexts are indis-
tinguishable under chosen plaintext attacks (where the at-
tacker has access to an encryption oracle). In particular, this
means the encryption mode needs to be non-deterministic
(encrypting the same USB payload results in a different ci-
phertext), therefore it needs to make use of nonces or se-
quence numbers when encrypting.

host device

in(data)

descriptor, K
ds

setup
(enumeration)

out(enc(K
ds

, data))

get_descriptor

operation

Figure 4: UScramBle protocol extension. The key is
exchanged upstream during the device setup phase.
The key is then used to encrypt downstream traffic
for all following actual functional device operation.

In practice, we have chosen to keep track of the number
of AES-block-sized (16 bytes) blocks transferred per-device
as sequence number on both sides, and use AES-CTR with
a 16-byte sequence number as initialization vector. We have
chosen AES-CTR (which is IND-CPA secure under the as-
sumption that AES is a pseudorandom permutation) be-
cause USB packets can be of any length, and CTR mode
keeps packet lengths unchanged.
This defends against the USB sniffing attack in Section 3:

the attacker merely sees packets that are encrypted with a
symmetric key that the attacker cannot obtain.
We perform the key exchange very early in the setup phase

of the USB device (Figure 4), which is called device enumer-
ation. In this phase, right after the device has its address
set, the host queries the device for its device descriptor. We
chose to embed a 128 byte long key in the device descriptor’s
serial number field. The serial number is used by the host
to distinguish multiple identical devices present on the bus.
The serial number field in the device descriptor references
an entry in a USB string table that contains the actual key.
The key is randomly generated when the device is powered
up.
After the key exchange succeeded, the host encrypts the

payload of data packets that is sent to this device with the
corresponding device key. Since they do not carry payload,
we do not encrypt token and handshake packets. In case of
control transfers, which are used to communicate all config-
uration information between host and device, data packets
are also transmitted in plain. Note that configuration com-
munication, such as the enumeration process, is separate
from the device’s functionality. For example, a mass storage
device registers two bulk endpoints (IN and OUT) to handle
storage access commands and data transfer. Both the stor-
age access commands and the storage content are sent as
data packets and thus encrypted by UScramBle.
UScramBle is opt-in on the host side: In case the de-

vice does not send a key, the host continues to communicate
without encryption. While this might seem inconsequent at
first sight, it is necessary in order to be compatible with de-
vices that do not support encryption. If in turn, however, a
UScramBle enabled device is attached to a non-encrypting
host, it will deny communication. To the user, UScramBle
is completely transparent since it does not require any in-
teraction.

HCD

hub
driver

generic core
driver

UScramBle

mass
storage

HID

UDC

UDC hw driverHCD hw driver

... mass
storage
gadget

ethernet
gadget

...
gadget

Host Device

transceiver transceiver

UScramBle

Figure 5: Host- and device side of the Linux kernel
USB driver stack. UScramBle is implemented at the
common device controller layer on both sides.

4.2 Implementation
We implementUScramBle as a modification to the Linux

kernel version 4.3. Figure 5 shows how our prototype imple-
mentation of UScramBle fits into the USB driver stacks.
Implementing it at the host controller driver (HCD) on the
host side and the USB device controller (UDC) on the device
side puts it in the sweet spot between various higher level
functions and low-lever firmware that allows a layered design
limiting code changes to a single place at each side of the
driver stack. This makes the UScramBle implementation
generic enough to be both device and function agnostic.

On the device side, the hardware specific UDC drivers are
at the bottom of the USB driver stack. They process the
USB request queue, which consists of usb_request structs.
These structs describe an I/O request and are associated
with an endpoint of the device. They contain a pointer to
the transfer buffer, the length of the transfer buffer as well
as a pointer to the I/O completion routine. The latter is
called by the hardware specific UDC driver whenever an
I/O request has finished. In the case of an OUT request, the
completion routine is called after the data has been written
to the transfer buffer and eventual DMA operations have
completed.

On the top of the driver stack are the gadget drivers, which
implement the device functionality. The Linux kernel fea-
tures gadget drivers for various devices, such as mass stor-
age, HID, Ethernet, serial or video devices. These gadget
drivers interact almost directly with the hardware specific
UDC drivers, except for a thin generic UDC layer that im-
plements a common API. It is here whereUScramBle inter-
cepts the control flow before the gadget driver’s completion
routine is called and decrypts the contents of the transfer
buffer. This way decryption is completely transparent to the
gadget driver, which only sees the decrypted payload. We
also implement the encryption key generation at the UDC
layer, where we have access to the device configuration. The
key is generated using the kernel’s get_random_bytes() rou-
tine.

5. EVALUATION
We evaluated our implementation of UScramBle on a

standard desktop host with Intel i7-6700 CPU, 32GB RAM,
running stock Ubuntu 14.04 LTS except for our kernel mod-
ifications. On the device end, we use a USBarmory4, an em-
bedded device based on a NXP i.MX53 512MB RAM with a

4USBarmory https://inversepath.com/usbarmory

https://inversepath.com/usbarmory

3.5K Transfer Rate [KB/s] 95% Confidence Interval
Baseline 2816 ±71.4
UScram-
Ble

2781 ±66.3

3.5K Request Time [ms] 95% Confidence Interval
Baseline 6.34 ±0.24
UScram-
Ble

6.41 ±0.22

10M Transfer Rate [KB/s] 95% Confidence Interval
Baseline 17430 ±6.05
UScram-
Ble

17306 ±6.65

10M Request Time [ms] 95% Confidence Interval
Baseline 2938 ±1.02
UScram-
Ble

2959 ±1.14

Table 1: Network transfer rates and request times
measured using Apache benchmark.

USB device-side interface, running Debian Jessie, also with
our kernel modifications.
We choose two real world scenarios for the performance

evaluation, writing data to mass storage and transmitting
network data via Ethernet. The corresponding functional-
ity is implemented by the Ethernet and the mass storage
gadget drivers of the Linux gadget driver framework. Each
scenario is benchmarked with at least 30 runs, and confi-
dence intervals are computed over these runs.
To benchmark the network scenario, we run lighttpd5 on

the device and fetch data via HTTP from the host using
apache benchmark6. The results on the transfer rate and
the time per request are given in Table 1. The overhead
caused by UScramBle is 0.7% each for a file of 10MB and
1.2% (transfer rate) and 1.1% (time per request) for a file of
3.5KB, lighttpd’s default page.
To benchmark the mass storage scenario, we use fio, the

Linux flexible I/O tester7. We run it on the block de-
vice exposed by the gadget driver with a test file size of
100MB, direct I/O and a random write pattern to mea-
sure the throughput. We chose this worst-case workload
because direct I/O and random access guarantee that we do
not hit the filesystem cache, and, because encryption hap-
pens only on downstream communication, we only perform
writes. These benchmark results are given in Table 2. The
overhead caused by UScramBle is 15% in this workload.
We have verified that the overhead is not caused by the en-
cryption time itself. It is presumably caused by intercepting
the DMA data path on the host driver stack, thus slowing
down the transfer. Indeed, we checked that DMA transfers
on the host occur in this mass storage scenario, but do not
occur in the network device scenario.

6. DISCUSSION
The attack described in this paper does not fully apply

to USB 3.0 and above. With USB 3.0, downstream broad-

5lighttpd https://www.lighttpd.net/
6Apache benchmark https://httpd.apache.org/docs/2.2/
programs/ab.html
7fio https://github.com/axboe/fio

Throughput [KB/s] 95% Confidence Interval

Baseline 6877 ±200

UScramBle 5851 ±121

Table 2: Mass storage throughput as measured by
the Linux flexible I/O tester.

cast of packets by the hubs has been removed in favor of
packet routing. Hosts that are USB 3.0 capable keep track
of which hubs the packet needs to pass to its destination
and imprint this information into the route string embed-
ded in the packet header. USB 3.0 hubs interpret the route
string and forward the packet only based on the imprinted
route. However, this packet routing mechanism only applies
to the SuperSpeed lanes of USB 3.0. Any downstream traf-
fic routed over the HighSpeed lanes is still broadcasted for
reasons of downward compatibility. For example, a USB 3.0
mass storage device attached to a USB 2.0 hub is still sus-
ceptible to a sniffing attack. Also, given the vast number of
USB 2.0 peripherals deployed, and some of the hubs even
embedded in devices with a long lifespan such as monitors,
we do think that the eavesdropping attack we describe will
remain relevant for many years to come. In addition, be-
cause the USB 3.0 protocol has not been designed with a
threat model comparable to the one in this paper, it is not
excluded that the sniffing attack may be extended to USB
3.0 in the future.

A weak point of the solution is that the device is required
to acquire sufficient entropy to generate the random cryp-
tographic key. This is a well-known problem in practical
applied cryptography, especially for embedded systems [7,
4]. However, a carefully implemented embedded system
can generally have access to enough randomness to generate
cryptographic keys, as was the case for our test platform.

7. RELATED WORK
Most research efforts regarding USB security are focused

on protecting a victim host from a malicious USB device.
Fuzz testing has shown to be effective in finding vulnerabili-
ties in the host’s USB driver stack [12]. GoodUSB [16] mit-
igates attacks that are based on exploiting the end user’s ex-
pectation of a USB device’s behavior. To this end, GoodUSB
has the end user classify every device the first time it is con-
nected. Based on the classification, the device is assigned
a policy such as storage or cellphone and the OS kernel en-
forces this policy. Finer-grained policies, such as headset,
which limit a HID’s device functional capabilities require
modification of the corresponding kernel driver. Along simi-
lar lines, approaches that are based on authentication mech-
anisms for USB [18, 19] help to protect the host against
actively malicious devices by establishing a concept of trust
between host and device. These solutions address a problem
orthogonal to passive eavesdropping and thus do not protect
against the sniffing attack described in this paper.

On the transport encryption side, Debaio et al. propose an
elaborate three-factor security protocol [6] for mass storage
devices attached via USB in a theoretical study. We believe
a lean approach as presented in this paper takes into account
the specifics of the USB protocol and is both sufficient and
superior from a usability point of view, since there are nei-
ther passwords, nor an authentication server, which requires

https://www.lighttpd.net/
https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://github.com/axboe/fio

network connectivity, involved. Besides, UScramBle is de-
vice agnostic and not limited to mass storage devices.
Although far less popular and ubiquitous, Firewire is an-

other peripheral bus that has been used for attacks in the
past. Prominent attacks exploited Firewire’s DMA capa-
bility to retrieve sensitive memory content such as crypto-
graphic keys from the host [2]. Along the same lines, the
newer Thunderbolt bus can be exploited [13]. DMA mal-
ware [14] is a generalization of this class of attacks, where
the host is compromised through the DMA feature of a
peripheral bus. While to the best of our knowledge both
Firewire and Thunderbolt do not employ encryption and
are thus susceptible to eavesdropping, both mitigation and
attack would need to take into account the different network
topology compared to USB.

8. CONCLUSION
In this paper, we present both an eavesdropping attack

on USB communication as well as a protection against such
an attack. The USB sniffing attack allows an adversary to
passively listen in on all traffic that is sent from the host
to a device. Our solution, UScramBle, effectively protects
against such an attack by encrypting the traffic. The perfor-
mance evaluation of our prototype implementation demon-
strates that the overhead introduced by UScramBle is rea-
sonable for real-world scenarios. Because UScramBle is
completely transparent, i.e. it requires no user interaction,
and compatible with legacy devices, it is effectively encrypt-
ing USB communication opportunistically, and successfully
defending against USB sniffing attacks introduced in this
paper.

9. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 644412. The
authors would like to thank Marc Stoecklin, Dhilung Kirat
and Jiyong Jang for fruitful discussions on USB security.

10. REFERENCES
[1] D. Barrall and D. Dewey. Plug and Root, the USB

Key to the Kingdom. BlackHat US, 2005.

[2] M. Becher, M. Dornseif, and C. Klein. Firewire – all
your memory are belong to us. CanSecWest, 2014.

[3] Compaq, DEC, IBM, Intel, Microsoft, NEC and
Nortel. Universal Serial Bus Revision 2.0 Specification.
http://www.usb.org/developers/docs/usb20 docs/,
2005.

[4] J. Corbet. Random numbers for embedded devices.
Linux Weekly News,
https://lwn.net/Articles/507115/, 2012.

[5] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet
Dossier. https://www.symantec.com/content/en/us/
enterprise/media/security response/whitepapers/w32
stuxnet dossier.pdf, 2011.

[6] D. He, N. Kumar, J.-H. Lee, and R. Sherratt.
Enhanced three-factor security protocol for consumer
usb mass storage devices. Consumer Electronics,
IEEE Transactions on, 60(1), 2014.

[7] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. Mining your ps and qs: Detection of

widespread weak keys in network devices. In USENIX
Security Symposium (USENIX SEC), 2012.

[8] M. Jodeit and M. Johns. Usb device drivers: A
stepping stone into your kernel. In European
Conference on Computer Network Defense (EC2ND),
2010.

[9] J. Larimer. Beyond Autorun: Exploiting
vulnerabilities with removable storage. BlackHat US,
2011.

[10] K. Nohl, S. Krissler, and J. Lell. Badusb – on
accessories that turn evil. BlackHat US, 2014.

[11] G. Ose. Exploiting USB Devices with Arduino.
BlackHat US, 2011.

[12] S. Schumilo, R. Spenneberg, and H. Schwartke. Dont
trust your usb! how to find bugs in usb device drivers.
BlackHat US, 2014.

[13] R. Sevinsky. Funderbolt – adventures in thunderbolt
dma attacks. BlackHat US, 2013.

[14] P. Stewin and I. Bystrov. Understanding dma
malware. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2013.

[15] A. Tetmeyer and H. Saiedian. Security threats and
mitigating risk for usb devices. Technology and Society
Magazine, IEEE, 29(4), 2010.

[16] D. Tian, A. Bates, and K. Butler. Defending Against
Malicious USB Firmware with GoodUSB. In Annual
Computer Security Applications Conference (ACSAC),
2015.

[17] Z. Wang and A. Stavrou. Exploiting smart-phone usb
connectivity for fun and profit. In Annual Computer
Security Applications Conference (ACSAC), 2010.

[18] Z. Wang and A. Stavrou. Usbsec: A defense to the
ghost in your pocket. Kaspersky Security IT
Conference, 2011.

[19] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang.
Tmsui: A trust management scheme of usb storage
devices for industrial control systems. In Conference
on Information and Communications Security
(ICICS), 2015.

http://www.usb.org/developers/docs/usb20_docs/
https://lwn.net/Articles/507115/
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

	Introduction
	Background and Threat model
	Background
	Threat model

	Attack
	Setup
	Attack Scenarios

	UScramBle
	Design
	Implementation

	Evaluation
	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

