
Jordan	Sisselhacker

Table	of	Contents
1.	 Backstory
2.	 What	is	/bin/false?
3.	 Hole	#1:	Potential	Firewall	Bypass
4.	 Hole	#2:	Anonymous	traffic
5.	 Hole	#3:	Resource	Starvation
6.	 Example	DoS
7.	 Why	does	the	DoS	work?
8.	 Fixing	It
9.	 Mentionable	Notes

Search	this	site
Custom	Search

Metadata
Home
About
Resume
Code	Repository
Subscribe	/	Feed
Twitter	(@jordansissel)

Articles
ARP	Security
Dynamic	DNS	with	DHCP
OpenLDAP	&	Kerberos
PPP	over	SSH
SSH	Security:	/bin/false
Week	of	Unix	Tools
Work	Efficiency

Projects
logstash
eventmachine-tail
ruby	minstrel
ruby-sshkeyauth
python-rightscale
s3cleaner
syslog-shipper
grok
keynav
liboverride
fex
sysadmin	advent
calendar
xdotool
pam_captcha
firefox	tabsearch
firefox	urledit
newpsm	(FreeBSD)
nis2ldap
poor	man's	backup
Solaris	audio	utility
xboxproxy
xmlpresenter
xpathtool
misc	scripts

Presentations
Yahoo!	Hack	Day	'06
Yahoo!	Hack	Day	'08
MPICH	101
Hacking/Security	101
RDF/Semantic	Web
Unix	Essentials
Vi/Vim	Essentials
SSH	Tunneling	(Video)

SSH	Security	and	You	-	/bin/false	is	*not*	security
Posted	Wed,	28	Dec	2005

Backstory
While	at	RIT	around	2004	or	2005,	I	discovered	that
a	few	important	machines	at	the	datacenter	allowed
all	students,	faculty,	and	staff	to	authenticate	against
them	via	ssh.	Everyone's	shells	appear	to	be	set	to
/bin/false	(or	some	derivative)	on	said	machines,	so
the	only	thing	you'll	see	after	you	authenticate	is	the
login	banner	and	your	connection	will	close.	I	thought
to	myself,	"Fine,	no	shell	for	me.	I	wonder	if	port
forwarding	works?"
Seems	reasonable,	right?	Whatever	sysadmin	was
tasked	with	securing	these	machines	forgot
something	very	important	about	ssh2:	channels.	I	use	them	often	for	doing	agent,	x11,	or	port
forwarding.	You	probably	use	them	too,	right?	So	what	happens	if	we	try	to	port	forward
without	requesting	a	shell	(ssh	-N)?	You	might	not	have	guessed	that	it	allows	you	to	do	the
requested	port	forward	and	keeps	the	connection	alive.	SSH	stays	connected	because	it	never
executes	the	shell,	so	it	never	gets	told	to	die.	Whoops!
ITS	(RIT's	"we	make	the	network	go"	department)	uses	ssh.com's	sshd	on	all	(afaik)	of	their
servers.	I	looked	at	the	sshd_config	manual	for	ssh.com's	sshd.	It	clearly	defines	an	option
exactly	the	same	as	OpenSSH's	sshd:	AllowGroups.	This	allows	you	to	restrict	ssh-
authenticatable	users	by	group.	What	does	that	mean?	It	means	you	can	put	all	the	users	who
need	to	ssh	to	your	machines	into	a	single	group	and	prevent	unauthorized	users	from
authenticating	(getting	a	shell,	port	forwarding,	etc).	So	what	any	intelligent	sysadmin	would	do
in	this	situation	is	use	the	AllowGroups	option	and	fix	this	fairly	major	security	issue.
RIT's	ITS	has	fixed	the	issue	on	their	own	machines.	Have	you?
In	summary:	If	you	don't	want	me	to	have	access	to	your	machines,	then	don't	allow	me	access
to	your	machines.	/bin/false	is	not	security.
What	is	/bin/false?
Many	times	you	will	have	a	system	where	you	need	a	user	to	exist	in	the	account	database	(say,
/etc/passwd)	but	don't	want	to	give	them	shell	access	to	your	machine(s).	A	common	solution	to
this	is	to	set	a	user's	shell	to	/bin/false.	This	has	the	effect	of	rejecting	shell	login	attempts	over
ssh,	telnet,	or	other	shell-requesting	protocols.	It	may	have	other	side	effects	too,	but	those	are
beyond	the	scope	of	this	article.
Simply	using	/bin/false	as	someone's	shell	does	not	keep	them	from	using	said	account	to
authenticate	over	ssh	and	using	non-shell	tools	such	as	port	forwarding.	A	default	configuration
in	sshd	will	often	allow	tunneling	and	other	non-shell	activity.
Hole	#1:	Potential	Firewall	Bypass
So,	to	make	things	more	interesting,	there	are	two	obvious	holes	I	can	exploit	here.	The	first,	is
firewall-bypass.	ITS	employs	lots	of	ACLs	limiting	access	to	machines	by	IP	ranges.	This	is	a
normal	practice	in	the	world.	However,	what	if	the	machine	I	am	port	forwarding	through	is	one
of	these	trusted	machines?	You	just	gave	me	access	to	your	supposedly	locked-down	network.
Don't	do	that.
Hole	#2:	Anonymous	traffic
I	can	make	my	traffic	far	more	anonymous	by	using	ssh's	port-forward	or	SOCKS	proxy	feature.
OpenSSH	does	not	appear	to	log	port-forward-only	sessions,	so	chances	are	you	can	get	away
with	using	this	half-secured	server	as	a	proxy.	I	haven't	done	all	the	research,	but	ssh	port-
forward-only	sessions	only	seem	to	show	up	in	process	listings	and	not	standard	audit	logs.	This
stuff	needs	to	be	logged	if	you're	going	to	allow	it.
Hole	#3:	Resource	Starvation
The	third	one	is	less	obvious,	but	quite	easy.	You	setup	a	remote	port	forward	(ssh	-R)	pointed	at
"itself"	(the	machine	you're	logging	into)	and	then	a	local	port	forward	(ssh	-L)	to	the	machine	so
you	can	just	touch	it	with	telnet	and	walk	away.	This	creates	a	large	problem	on	the	end	machine
becuase	you	will	eventually	take	up	all	the	available	file	descriptors,	and	since	unix	lives	on	file
descriptors,	you	just	DoS'd	the	machine.	So	if	some	naughty	person	manages	to	guess	a
password	of	one	of	your	30000	users,	he/she	can	happily	perform	resource	starvation	attacks
'till	the	end	of	the	day	despite	your	wishes	that	I	stay	off	your	machine.	Like	I	said,	/bin/false	is
not	security.
Example	DoS
I	used	3	xterms	for	this	(wow,	high-tech!).	I	could've	used	one	shell,	but	I	like	seeing	debug
output.

(terminal	1)	whack%	ssh	-vN	-L4141:localhost:4141	kenya
(terminal	2)	whack%	ssh	-vN	-R4141:localhost:4141	kenya
(terminal	3)	whack%	telnet	localhost	4141

I	use	ssh	-v	because	I	want	to	see	what's	going	on.	As	soon	as	I	execute	the	telnet	command,
the	other	two	terminals	are	flooded	with	debug	information	detailing	new	port	forwarded
connections	happening,	etc.	Since	you've	just	created	a	loop,	you	can	now	kill	the	telnet	session
and	the	loop	maintains	it's	stability.
Simply	wait	a	few	minutes	and	you'll	fill	up	the	openfiles	table.

http://www.semicomplete.com/articles/ssh-security#id54054
http://www.semicomplete.com/articles/ssh-security#id54098
http://www.semicomplete.com/articles/ssh-security#id54118
http://www.semicomplete.com/articles/ssh-security#id54130
http://www.semicomplete.com/articles/ssh-security#id54143
http://www.semicomplete.com/articles/ssh-security#id54169
http://www.semicomplete.com/articles/ssh-security#id54197
http://www.semicomplete.com/articles/ssh-security#id54221
http://www.semicomplete.com/articles/ssh-security#id54249
http://www.semicomplete.com/
http://www.semicomplete.com/about/
http://www.semicomplete.com/resume.xml
https://github.com/jordansissel/
http://feeds.feedburner.com/semicomplete/main
http://www.twitter.com/jordansissel
http://www.semicomplete.com/articles
http://www.semicomplete.com/articles/arp-security/
http://www.semicomplete.com/articles/dynamic-dns-with-dhcp/
http://www.semicomplete.com/articles/openldap-with-saslauthd/
http://www.semicomplete.com/articles/ppp-over-ssh/
http://www.semicomplete.com/articles/ssh-security/
http://www.semicomplete.com/articles/week-of-unix-tools/
http://www.semicomplete.com/articles/efficiency/
http://www.semicomplete.com/projects
http://logstash.net/
https://github.com/jordansissel/eventmachine-tail
https://github.com/jordansissel/ruby-minstrel
https://github.com/jordansissel/ruby-sshkeyauth
https://github.com/jordansissel/python-rightscale
https://github.com/jordansissel/s3cleaner
https://github.com/jordansissel/syslog-shipper
http://www.semicomplete.com/projects/grok
http://www.semicomplete.com/projects/keynav
http://www.semicomplete.com/projects/liboverride
http://www.semicomplete.com/projects/fex
http://sysadvent.blogspot.com/
http://www.semicomplete.com/projects/xdotool
http://www.semicomplete.com/projects/pam_captcha
http://www.semicomplete.com/projects/firefox-tabsearch
http://www.semicomplete.com/projects/firefox-urledit
http://www.semicomplete.com/projects/newpsm
http://www.semicomplete.com/projects/nis2ldap
http://www.semicomplete.com/projects/pmbackup
http://www.semicomplete.com/projects/solaudio
http://www.semicomplete.com/projects/xboxproxy
http://www.semicomplete.com/projects/xmlpresenter
http://www.semicomplete.com/projects/xpathtool
http://www.semicomplete.com/scripts
http://www.semicomplete.com/presentations/hackday06
http://www.semicomplete.com/presentations/hackday08
http://www.semicomplete.com/presentations/mpi
http://www.semicomplete.com/presentations/security
http://www.semicomplete.com/presentations/semantic-blogging
http://www.semicomplete.com/presentations/unix-basics
http://www.semicomplete.com/presentations/vim
http://video.google.com/videoplay?docid=-3694684117834367516


Why	does	the	DoS	work?
How	is	this	DoS	accomplished?	Well	besides	whoring	CPU	some	and	slowly	increasing	in	memory
usage,	you	chew	up	entries	on	the	system's	open	file	table.	During	this	test,	I	checked	the
growth	of	the	number	of	open	file	descriptors	on	kenya	(the	"target"	of	our	DoS):

kenya(~)	[1003]	%	while	:;	do	sysctl	kern.openfiles;	sleep	1;	done
kern.openfiles:	242
kern.openfiles:	242
kern.openfiles:	278
kern.openfiles:	652
kern.openfiles:	896
kern.openfiles:	1082
kern.openfiles:	1246

The	number	was	stable	at	242	before	the	attack	began,	and	rose	rapidly.	If	you	don't	speak
bourne,	the	numbers	are	printed	one	per	second.	So	the	increase	is	something	like	100-300	file
descriptors	per	second.	That	is	quite	significant,	and	will	very	quickly	hose	a	host.	Notably,	there
is	a	rapid	decelleration	in	the	number	of	files	opened	per	second,	but	it	steadies	(for	me)	around
20-30	per	second	after	about	7000	open	sockets.
Fixing	It
The	systems	in	question	were	old	old	Solaris	7	or	Tru64	systems.	Modern	systems	will	generally
have	a	pam	module	that	will	help	you	here	-	possibly	allowing	you	to	reject	authentication
requests	over	ssh	simply	because	the	user's	shell	is	set	to	/bin/false,	or	/usr/sbin/nologin	(or
wherever	that	is	on	your	system).
Other	solutions	include	fixing	your	sshd	config	to	do	any	of	the	following	(assumes	OpenSSH
and	possibly	SSH.com	sshd):

Restrict	which	users	are	allowed	via	AllowUsers	or	AllowGroups
Deny	tunneling/forwarding:	AllowTcpForwarding,	X11Forwarding,	PermitTunnel

Mentionable	Notes
ssh	sessions	not	requesting	shells	(ssh	-N)	do	not	show	up	in	utmp,	therefore	are	not	listed	in
w(1)	output,	and	not	in	last(1),	etc.	Unless	there's	a	more	in-depth	audit	log,	you	just	made	your
traffic	atleast	somewhat	anonymous	(assuming	you're	actually	port-forwarding).	So	go	ahead
and	abuse	that.
Chance	are,	if	someone	gives	you	an	account	and	tries	to	prevent	ssh	access	with	only
/bin/false,	they	probably	don't	know	about	ssh2	or	channels,	or	haven't	thought	about	how	it
might	not	prevent	all	ssh	access.	So	there's	a	high	probability	that	you'll	get	away	with	it
forwarding	traffic	or	DoS'ing	the	server.

Link	to	this	post	|	posted	at:	00:00

http://www.semicomplete.com/blog/articles/ssh-security/main.html

