
Android forensics deep dive
Acquisition & analysis of Raw NAND

flash and the YAFFS2 file system

Dr. Bradley Schatz
Director, Schatz Forensic

Adjunct associate professor, Queensland
University of Technology

SyScan360 – Beijing

Background

NAND Flash is used pervasively in
mobile and embedded devices

• Mobile phones retain:

– What they said,

– Who they said it to,

– Were they said it,

– What they searched for (what concerns them)

– Where they travelled

– When they charged

– …

 © 2013 Schatz Forensic

Significant challenges to establishing
reliable evidence

• Getting the data out intact
– Device and OS diversity

• Interpreting the data into usable evidence
– Device and OS diversity

• Absence of scientific rigour from tool vendors
– Transparency & independent reproducibility missing to

date

© 2013 Schatz Forensic

The Android landscape isn’t
homogenised

• Bootloader: Redboot, HTC HBoot, Samsung

• Filesystem: YAFFS2, Samsung RFS, EXT4

• FTL: Integrated, MTD, Samsung XSR

• Memory device: Raw NAND flash (xN footprint),
eMMC…

© 2013 Schatz Forensic

Theory of operation

An Android Storage Architecture

MTD

YAFFS2

MTD Device
Specific Driver

Linux Kernel

VFS

FAT

mmc driver

Flash
Controller

NAND

MMC Card

© 2013 Schatz Forensic

Block
Subsystem

Source: Samsung KA100O015E-BJT rev 1.0 Datasheet

Flash memory is designed to store
metadata in addition to each block

Source: Micron TN-29-19 Flash 101

The metadata and data may be
arranged differently in a page

Pages cannot be individually erased

Erase block = 64 pages

© 2013 Schatz Forensic

Pages must be written serially to an
Erase Block

Page written before those to
left

© 2013 Schatz Forensic

Pages can only be written a fixed
number of times

MTD

YAFFS2

MTD Device
Specific Driver

Linux Kernel

VFS

FAT

mmc driver

Flash
Controller

NAND

MMC Card

Wear
Levelling

© 2013 Schatz Forensic

Block
Subsystem

Bit errors are anticipated

MTD

YAFFS2

MTD Device
Specific Driver

Linux Kernel

VFS

FAT

mmc driver

Flash
Controller

NAND

MMC Card

Error
Correction

(EEC)

Block
Subsystem

Wear
Levelling

© 2013 Schatz Forensic

MMC Integrates flash controller and
NAND

MTD

YAFFS2

MTD Device
Specific Driver

Linux Kernel

VFS

FAT

mmc driver

Flash
Controller

NAND

MMC Card

Error
Correction

(EEC)

Block
Subsystem

Flash
Translation

Layer

Wear
Levelling

© 2013 Schatz Forensic

EEC
(Handled by MTD

or Flash Controller)

YAFFS2 stores metadata in the spare

User Data
(2048 bytes)

Spare
(64 bytes)

Packed Tags

uint sequence

uint objectId

uint chunkId

uint/ushort nBytes

© 2013 Schatz Forensic

YAFFS2 Basics: Simple file write

Object Header

ChunkID = 0

File Name = “a”

Sequence = 0x1001

Size = 0

Data block 1

ChunkID = 1

Address = 0x0

Sequence = 0x1001

Data block 2

ChunkID = 2

Address = 2048

Sequence = 0x1001

Object Header

ChunkID = 0

File Name = “a”

Sequence = 0x1001

Size = 4096

© 2013 Schatz Forensic

Getting the data out
Acquisition

© 2013 Schatz Forensic

Acquisition principles

• Completeness

• Accuracy

• Repeatability

• Integrity

© 2013 Schatz Forensic

Acquisition methods

• Logical: file copy over android debug bridge

• Pseudo physical: get root, dump NAND block
devices

• Bootloader

• Physical 1: JTAG access to flash

• Physical 2: Chip off

© 2013 Schatz Forensic

Logical

• Enable ADB on phone

• Connect and recursive copy

• - Limited access to files

• - No prior versions

• - We are trusting the kernel

 © 2013 Schatz Forensic

Bootloader approaches

• Disable bootloader security

• RAM load custom boot image

• Dump using “Live” Ramdisk

• - Wipes most (not all) devices

• - Limited coverage

• - Maintenance of “live” ramdisks

See: Cannon (2012) Into the Driod, Blackhat
See: Vidas (2011) Toward a general collection methodology for Android devices, DFRWS

© 2013 Schatz Forensic

Pseudo-physical (nanddump)

• Requires unlocked phone/pin

• Requires root access to device
• Range of exploits to do this

• - Exploit validation

• - Perception management

• Dump MTD devices with nanddump
• - MTD is not accurate

• - We still don’t have access to the entire flash device

• - We are trusting the phone’s kernel

© 2013 Schatz Forensic

Pseudo-physical: Exploitation
<3>[684.803710] init: untracked pid 3882 exited

<3>[684.803833] init: untracked pid 3883 exited

<3>[684.803955] init: untracked pid 3884 exited

<3>[684.804199] init: untracked pid 3885 exited

<3>[684.804321] init: untracked pid 630 exited

<6>[723.455749] [HTC_BATT]RSNSP=67,RARC=6,Vol=3781mV,Current=299mA,Temp=288C(1/10)

<6>[723.455963] batt: ds2784_notify: 1 6 at 719276978798 (1980-01-06 00:14:06.669006333 UTC)

<6>[723.462738] batt: batt:power_supply_changed: battery at 719283875771 (1980-01-06 00:14:06.675750718 UTC)

<6>[783.453399] [HTC_BATT]RSNSP=67,RARC=6,Vol=3781mV,Current=301mA,Temp=288C(1/10)

<6>[843.457244] [HTC_BATT]RSNSP=67,RARC=7,Vol=3781mV,Current=301mA,Temp=288C(1/10)

<6>[843.457458] batt: ds2784_notify: 1 7 at 839278474159 (1980-01-06 00:16:06.670501694 UTC)

<6>[843.464019] batt: batt:power_supply_changed: battery at 839285035439 (1980-01-06 00:16:06.677062974 UTC)

<6>[903.451873] [HTC_BATT]RSNSP=67,RARC=7,Vol=3781mV,Current=301mA,Temp=290C(1/10)

cat /pro opc c/mtd

dev: size erasesize name

mtd0: 000a0000 00020000 "misc"

mtd1: 00500000 00020000 "recovery"

mtd2: 00280000 00020000 "boot"

mtd3: 0fa00000 00020000 "system"

mtd4: 02800000 00020000 "cache"

mtd5: 093a0000 00020000 "userdata"

© 2013 Schatz Forensic

Pseudo-physical: Get I/O Channel
cat / mount

rootfs / rootfs ro 0 0

tmpfs /dev tmpfs rw,mode=755 0 0

devpts /dev/pts devpts rw,mode=600 0 0

proc /proc proc rw 0 0

sysfs /sys sysfs rw 0 0

tmpfs /sqlite_stmt_journals tmpfs rw,size=4096k 0 0

none /dev/cpuctl cgroup rw,cpu 0 0

/dev/block/mtdblock3 /system yaffs2 ro 0 0

/dev/block/mtdblock5 /data yaffs2 rw,nosuid,nodev 0 0

/dev/block/mtdblock4 /cache yaffs2 rw,nosuid,nodev 0 0

tmpfs /app-cache tmpfs rw,size=8192k 0 0

/dev/block//vold/179:1 /sdcard vfat
rw,dirsync,nosuid,nodev,noexec,uid=1000,gid=1015,fmask=0702,dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-
1,shortname=mixed,utf8,errors=remount-ro 0 0

mount -o exec,remount /dev/block//vold/179:1 /sdcard

cd /s sdcaard rd
chmod 755 nanddump

ls -l

d---rwxr-x system sdcard_rw 1980-01-06 10:01 LOST.DIR

----r-xr-x system sdcard_rw 713750 2011-12-16 20:47 nanddump

© 2013 Schatz Forensic

Pseudo-physical: Acquire
ls /dev -l /dev/md td/

crw------- root root 90, 11 1980-01-06 10:02 mtd5ro

crw------- root root 90, 10 1980-01-06 10:02 mtd5

crw------- root root 90, 9 1980-01-06 10:02 mtd4ro

crw------- root root 90, 8 1980-01-06 10:02 mtd4

crw------- root root 90, 7 1980-01-06 10:02 mtd3ro

crw------- root root 90, 6 1980-01-06 10:02 mtd3

crw------- root root 90, 5 1980-01-06 10:02 mtd2ro

crw------- root root 90, 4 1980-01-06 10:02 mtd2

crw------- root root 90, 3 1980-01-06 10:02 mtd1ro

crw------- root root 90, 2 1980-01-06 10:02 mtd1

crw------- root root 90, 1 1980-01-06 10:02 mtd0ro

cr--rw---- radio diag 90, 0 1980-01-06 10:02 mtd0

./nanddump --bb=dumpbad -o -f ./mtd0.nanddump /dev/mtd/mtd0

ECC failed: 0

ECC corrected: 0

Number of bad blocks: 0

Number of bbt blocks: 0

Block size 131072, page size 2048, OOB size 56

Dumping data starting at 0x00000000 and ending at 0x000a0000...

This doesn’t
match our
theory of
operation

© 2013 Schatz Forensic

JTAG Acquisition: Dismantle phone

© 2013 Schatz Forensic

JTAG acquisition: Identify JTAG points

Source: RIFF Box JTAG Manager

JTAG acquisition: Connect Jig & Power
cables

© 2013 Schatz Forensic

JTAG acquisition: Connect to JTAG
adapter

© 2013 Schatz Forensic

JTAG acquisition: Dump flash

• Dismantle phone

• Find JTAG pins (usually done
by grey market)

• Attach JIG/Solder wires to
JTAG adapter

• Dump flash with software

• ! Grey market
hardware/software

• ! Finicky

• + Complete acquisition

• + No kernel involvement

© 2013 Schatz Forensic

JTAG acquisition

• ! Grey market hardware/software

• ! Finicky

• + Complete acquisition

• + No kernel involvement

© 2013 Schatz Forensic

Chip off acquisition

• Dismantle phone++

• Identify flash

• Determine solder melting point

– Lead free testing kit

• Remove flash

– Kapton tape thermocouples to monitor temperature

– Controlled heat to chip (BGA IR Rework or Hot Air)

© 2013 Schatz Forensic

Source: Samsung KA100O015E-BJT rev 1.0 Datasheet

Chip off acquisition: post flash chip
removal

© 2013 Schatz Forensic

Chip off acquisition

• Cleaning of chip
– Removal of excess solder

– Removal of BGA underfill

– Clean with Isopropyl alcohol

• Re-balling
– Kapton tape chip to underside of stencil

– Apply solder paste and squeegee

– Melt solder with hot air

© 2013 Schatz Forensic

Chip off acquisition: re-balling stencil
and re-balled chip

© 2013 Schatz Forensic

Chip off acquisition

• Acquire chip footprint specific adapter

– Wide variety in chip sizes

• Acquire chip contents

– Universal programmer

– Build your own

© 2013 Schatz Forensic

Chip off acquisition

• ? Heat effects on flash content

• ? Moisture + heat effects

• ! Finicky++

• ! Expensive tools

 © 2013 Schatz Forensic

Analysis of Flash Volume

Interpretation methodology

1. Determine flash image format

2. Identify partition layout

3. Yaffs2: Identify tags layout

– Byte plots [1] as a perception enhancing tool

4. Interpret YAFFS Structures

[1] Conti et al (2010) Automated mapping of large binary objects using primitive
fragment type classification

© 2013 Schatz Forensic

Byteplot tool

• Each byte in source image = one greyscale value
[1]

• Organised with:

– visual cues seperating spare from user data area

– multiple columns (populate down then right)

[1] Conti et al (2010) Automated mapping of large binary objects using primitive
fragment type classification

© 2013 Schatz Forensic

Determine flash image format:
inline spare vs End spare

JTAG
acquisition w/
spare at end

JTAG image normalised
to inline spare

© 2012 Schatz Forensic

Clear delineation between spare and
user data

© 2011 Schatz Forensic

Source:

Clear delineation between spare and
user data

© 2011 Schatz Forensic

Source:

EEC

© 2011 Schatz Forensic

Source:

Identification of the partition layout

Kernel dmesg flash partitioning is the
most straightforward

<6>[10.202087] msm_nand: allocated dma buffer at ffa01000, dma_addr
3b1ac000
<6>[10.208343] msm_nand: read CFG0 = aa5400c0 CFG1 = 6746e
<6>[10.213317] msm_nand: CFG0 cw/page=3 ud_sz=512 ecc_sz=10 spare_sz=4
<6>[10.219757] msm_nand: NAND_READ_ID = 5500bcec
<6>[10.224060] msn_nand: nandid 5500bcec status c03120
<6>[10.228881] msm_nand: manuf Samsung (0xec) device 0xbc blocksz 20000
pagesz 800 size 20000000
<6>[10.237274] msm_nand: save CFG0 = e85408c0 CFG1 = 4745e
<6>[10.242584] msm_nand: CFG0: cw/page=3 ud_sz=516 ecc_sz=10 spare_sz=0
num_addr_cycles=5
<6>[10.250457] msm_nand: DEV_CMD1: f00f3000
<6>[10.254455] msm_nand: NAND_EBI2_ECC_BUF_CFG: 1ff
<5>[10.258911] Creating 6 MTD partitions on "msm_nand":
<5>[10.263946] 0x00001ff60000-0x000020000000 : "misc"
<5>[10.270080] 0x000004240000-0x000004740000 : "recovery"
<5>[10.279846] 0x000004740000-0x0000049c0000 : "boot"
<5>[10.283508] 0x0000049c0000-0x0000143c0000 : "system"
<5>[10.556365] 0x0000143c0000-0x000016bc0000 : "cache"
<5>[10.600402] 0x000016bc0000-0x00001ff60000 : "userdata"

/proc/mtd doesn’t give offset (and the
partitions may be out of order)

cat /pro opc c/mtd

dev: size erasesize name

mtd0: 000a0000 00020000 "misc"

mtd1: 00500000 00020000 "recovery"

mtd2: 00280000 00020000 "boot"

mtd3: 0fa00000 00020000 "system"

mtd4: 02800000 00020000 "cache"

mtd5: 093a0000 00020000 "userdata"

YAFFS2 Volumes are distinguished by Object
Header Striations

JTAG dump of
HTC Desire

YAFFS2 File (Object) metadata is stored
in the user data area

© 2012 Schatz Forensic

User Data
(2048 bytes)

Packed Tags

uint sequence

uint objectId

uint chunkId

uint/ushort nBytes

struct ObjectHeader {
int type;
Uint parentObjectID;
Short sum__NoLongerUsed;
char[256] name; //nullterminated
short reserved;
uint long yst_mode;
uint uid;
int yst_gid;
…
}

YAFFS2 File (Object) metadata is stored
in the user data area

User Data
(2048 bytes)

Packed Tags

uint sequence

uint objectId

uint chunkId

uint/ushort nBytes

struct ObjectHeader {
int type;
Uint parentObjectID;
Short sum__NoLongerUsed;
char[256] name; //nullterminated
short reserved;
uint long yst_mode;
uint uid;
int yst_gid;
…
}

* Carving criteria identified by Pooters (2011) Yaffs2 Object Headers DFRWS

Offset 0x200 to user data end
== 0xFF *

© 2013 Schatz Forensic

© 2012 Schatz Forensic

Object Header Striations Interpreted

Object Type,
Metadata

Name (null
termination is black)

Offset 0x200 to user data end
== 0xFF (white)

Theory indicates that Packed Tags and
ECC should be in spare

© 2012 Schatz Forensic

Packed tag location and layout are
currently a source of conflicting results

Source: Quick & Alzabbi (2011) Forensic analysis of the Android File System YAFFS2
Source: Bang et al (2011) DFRWS 2011 Forensic Challenge

YAFFS2 Basics: Simple file write

© 2012 Schatz Forensic

Object Header

ChunkID = 0

File Name = “a”

Sequence = 0x1001

Size = 0

Data block 1

ChunkID = 1

Address = 0x0

Sequence = 0x1001

Data block 2

ChunkID = 2

Address = 2048

Sequence = 0x1001

Object Header

ChunkID = 0

File Name = “a”

Sequence = 0x1001

Size = 4096

The ChunkID is distinguishable in
sequentially written large files

© 2012 Schatz Forensic

Source:

EEC

ChunkId
(incrementally

brightening line
downwards)

The Sequence Number is Constant
within the Erase Block

© 2012 Schatz Forensic

Source:

Constant lines for
blocksize length

A spare of 56 doesn’t seem consistent
with our current physical flash theory
./nanddump --bb=dumpbad -o -f ./mtd0.nanddump
/dev/mtd/mtd0

ECC failed: 0

ECC corrected: 0

Number of bad blocks: 0

Number of bbt blocks: 0

Block size 131072, page size 2048, OOB size 56

Dumping data starting at 0x00000000 and ending at
0x000a0000...

?

Why is the Object Header over filling
the User Data area ?

© 2012 Schatz Forensic

?

Chip off dump of KA100O015M-AJTT

And what are these vertical lines?

© 2012 Schatz Forensic

?

Is that EEC (note the high entropy) in
the user data area?

© 2012 Schatz Forensic

?

The Flash Controller is potentially the
problem

© 2012 Schatz Forensic

MTD

YAFFS2

MTD Device
Specific Driver

Linux Kernel

VFS

FAT

mmc driver

Flash
Controller

NAND

MMC Card

Flash controller
virtualises the view

of the page

Why is the Object Header over filling
the User Data area

© 2012 Schatz Forensic

464

Why is the Object Header over filling
the User Data area

© 2012 Schatz Forensic

464

52

Column relocation

© 2012 Schatz Forensic

Vertical line
was here

Column relocation

© 2012 Schatz Forensic

Vertical
lines now

here

Column relocation

© 2012 Schatz Forensic

EEC Was
Here

Column relocation

© 2012 Schatz Forensic

EEC Now
Here

Column relocation

© 2012 Schatz Forensic

Everything
else is

shifted left

Analysis of the
YAFFS2 Filesystem

Current freely available YAFFS2
implementations don’t generally work

with physical images

• Variable results with even pseudo physical
images

• No support for prior object versions

© 2012 Schatz Forensic

YAFFS2 Sparse file creation

© 2012 Schatz Forensic

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0 *sparse*

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0x1000

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0x1000

YAFFS2 Block Replace

© 2013 Schatz Forensic

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1001

Expired

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1002

New data block

Object Header

ChunkID = 0

Sequence = 0x1002

File Name = “a”

Size = 4096

YAFFS2 Version Recovery

© 2012 Schatz Forensic

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1001

Expired

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1002

New data block

Object Header

ChunkID = 0

Sequence = 0x1002

File Name = “a”

Size = 4096

Newest
version:

sequence
0x1002 and

lower

YAFFS2 Version Recovery

© 2012 Schatz Forensic

Object Header

ChunkID = 0

Sequence = 0x1001

File Name = “a”

Size = 0

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1001

Expired

Data block 2

ChunkID = 1

Address = 0x0

Sequence = 0x1002

New data block

Object Header

ChunkID = 0

Sequence = 0x1002

File Name = “a”

Size = 4096

Newest
version:

sequence
0x1002 and

lower

Newest
version:

sequence
0x1001 and

lower

Acquisition methodology

Acquisition Methodology

• JTAG or RAM Bootloader Acquisition
– Recover PIN

• Live acquisition
– Use PIN if necessary

– Disable radios

– Enable ADB

– Exploit (you have validated it yes?)

– Collect dmesg, /proc/mtd

– Pseudo physical acquisition

– Logical acquisition (for validation)

© 2012 Schatz Forensic

Conclusions

Contributions

• Byte plots assist in identifying structure in raw
byte sequences

• Inconsistencies in prior research resolved in part

• Visual artefacts corresponding to structural
elements identified

• A general acquisition methodology for JTAG
based analysis proposed

© 2012 Schatz Forensic

Future Work

• Partitioning

• Automated normalisation

• Effects of heat on NAND integrity

• JTAG for Volatile Memory Analysis ?

• eMMC

© 2012 Schatz Forensic

Acknowledgements

• Andrew Hoog and co (Viaforensics)

– For early and ongoing research in this area

• Tim Vidas

– For YAFFS2 test VM

• DFRWS

– For posing challenges that drive research

© 2012 Schatz Forensic

Dr Bradley Schatz | Forensic Computer Scientist
Director, Schatz Forensic
Adjunct Associate Professor, QUT

web: http://schatzforensic.com.au/
email: bradley@schatzforensic.com.au

Hard drive x-ray image by Jeff Kubina

http://schatzforensic.com.au/
mailto:bradley@schatzforensic.com.au
http://www.flickr.com/photos/kubina/941699149/
http://www.flickr.com/photos/kubina/941699149/

