
[home	[/index.html]]

Installing	OpenBSD	6.1	on	your	laptop	is	really	hard
(not)
I	used	the	steps	below	to	install	OpenBSD,	add	the	xfce4	desktop	and	to	set	up	a	graphical	log-in	on	my	Thinkpad
X200	laptop.

Each	step	starts	with	a	link	to	the	relevant	OpenBSD	FAQ	pages	so	you	can	cross	check	my	suggestions.	I
recommend	that	you	print	this	page	out	and	read	the	whole	page	before	pressing	on	with	the	installation.

Step	0:	Install	OpenBSD	[#0]
Step	1:	Connect	to	WiFi	[#1]
Step	2:	Set	up	a	package	mirror	and	install	a	package	[#2]
Step	3:	Install	the	xfce4	desktop	environment	and	some	applications	[#3]
Step	4:	Use	/etc/rc.conf.local	to	enable	apmd	and	graphical	log-in	[#4]
Step	5:	Use	/etc/doas.conf	to	allow	user	mounting	of	an	external	USB	stick	[#5]
Step	6:	Use	xfce4-mount-plugin	and	an	/etc/fstab	entry	to	allow	graphical	mount/unmount	of	a	USB	thumb	drive
[#6]
Step	7:	Updates	[#7]
Step	8:	Read	[#8]
Step	0a:	Install	OpenBSD	with	whole	drive	encryption	(advanced)	[#9]
Step	1a:	Simple	wifi	script	[#10]

Step	0:	Install	OpenBSD	according	to	the	instructions	in	FAQ
[top	[#top]]

Background	reading:	FAQ	4:	The	OpenBSD	installation	guide	[http://www.openbsd.org/faq/faq4.html]	.

I	usually	plan	to	install	a	new	kind	of	system	twice.	The	first	install	is	just	to	see	how	things	work,	and	to	make
mistakes.	I	accept	all	the	usual	default	settings.	For	instance,	I	select	[W]hole	disk	and	[A]uto	partition	settings	at
the	appropriate	point	in	the	OpenBSD	installation.	I	then	install	again,	this	time	with	the	customised	settings	that	I
want,	as	I	know	what	responses	the	system	will	give.

The	steps	below	assume	that	you	have	successfully	installed	the	base	OpenBSD	system	from	the	USB	stick	installer
(install61.fs)	or	the	CD-ROM	image	(install61.iso).

Step	1:	Connect	to	wifi
[top	[#top]]

Background	reading:	OpenBSD	FAQ	6.2.1	[http://www.openbsd.org/faq/faq6.html#Setup.if]	,	6.13
[http://www.openbsd.org/faq/faq6.html#Wireless]	.

I	have	a	Netgear	USB	wifi	stick	that	has	a	free/libre	driver	that	does	not	require	firmware.	On	OpenBSD,	each	kind
of	wifi	device	has	a	different	driver	name,	like	iwn0	for	Intel	5900	cards	and	urtw0	for	the	Netgear.	Use	the	ifconfig	-a
command	to	find	the	name	of	the	driver	for	your	particular	card.	Below	is	a	typical	dialogue	for	starting	up	an
encrypted	(wpa-personal)	wifi	connection.

$	su	-l
#	ifconfig	-a	#	shows	a	list	of	all	the	interfaces	
#	ifconfig	urtw0	up
#	ifconfig	urtw0	scan
#	ifconfig	urtw0	nwid	connection_name	wpakey	password	wpaprotos	wpa1,wpa2	
#	dhclient	urtw0	
DHCPREQUEST	on	urtw0	to	255.255.255.255	#	lots	more	output

Starting	with	OpenBSD	6.1,	you	need	to	use	the	wpaprotos	option	with	argument	wpa1	to	enable	connections	using
wpa1	encryption	because	of	security	issues	with	the	older	protocol.

You	have	to	repeat	these	commands	each	time	you	connect	to	wifi,	including	on	resume	from	suspend.	There	are
various	scripts	available	that	automate	reconnection.	A	very	simple	example	is	shown	in	Step	1a	below.

You	may	have	to	install	firmware	for	some	wifi	cards	[http://firmware.openbsd.org/firmware/]	using	the	fw_update
command,	e.g.	Intel	cards.	A	wired	connection	to	the	router	will	enable	you	to	connect	to	the	mirror	to	get	the
firmware	for	your	particular	card.	On	my	Thinkpad,	the	ethernet	driver	is	called	em0	and	connecting	to	a	wired
connection	is	just	one	command...

#	dhclient	em0
DHCPDISCOVER	on	em0	-	interval	3
DHCPOFFER	from	192.168.0.1	(00:1b:2f:42:41:42)
DHCPREQUEST	on	em0	to	255.255.255.255
DHCPACK	from	192.168.0.1	(00:1b:2f:42:41:42)

bound	to	192.168.0.4	--	renewal	in	43200	seconds.
#

Step	2:	Set	up	a	package	mirror	and	install	a	package
[top	[#top]]

Background	reading:	OpenBSD	FAQ	15.2	[http://www.openbsd.org/faq/faq15.html#PkgMgmt]	.

Precompiled	binaries	for	application	software	that	is	not	part	of	the	OpenBSD	base	are	called	'packages'	and	they
are	available	from	your	local	OpenBSD	mirror	[http://www.openbsd.org/ftp.html]	.	You	use	the	pkg_add	command	as
root	to	install	packages.	The	pkg_add	command	reads	the	URL	of	the	package	mirror	from	the	/etc/installurl	file.

If	you	installed	the	OpenBSD	package	sets	from	the	Internet,	you	will	already	have	the/etc/installurl	file	in	place
and	you	can	go	to	step	3.	If,	like	me,	you	prefer	to	install	OpenBSD	from	the	install.iso	or	install.fs	images,	you	will
need	to	create	the	/etc/installurl	file	as	below...

$	cat	/etc/installurl
https://www.mirrorservice.org/pub/OpenBSD

The	pkg_add	command	will	append	the	version	and	machine	architecture	directories	from	the	URL.	Don't	add	a
trailing	slash	or	any	version	number	or	machine	architecture	after	the	'OpenBSD'	part	of	the	URL.

A	fresh	OpenBSD	install	has	two	command	line	editors,	vi	and	mg.	I'm	not	a	real	hacker	so	I	use	echo	and	redirection.
As	root...

$	su	-l
#	echo	"https://www.mirrorservice.org/pub/OpenBSD"	>>	/etc/installurl
#	exit

To	install	applications,	you	need	to	become	root	and	run	pkg_add.

$	su	-l
#	pkg_add	nano				
quirks-2.114	signed	on	2015-08-09T15:30:39Z
nano-2.4.2:	ok
#	exit
$

Once	the	command	returns,	exit	root	and	try	editing	a	text	file	with	nano.

Step	3:	Install	the	xfce4	desktop	environment	and	some	applications
[top	[#top]]

The	packages	below	will	provide	the	xfce4	desktop,	a	Web	browser/email	client	and	a	pdf	viewer.

#	pkg_add	-v	consolekit2	xfce	xfce-extras	evince	seamonkey	xscreensaver

The	consolekit2	package	is	needed	to	allow	the	user	to	log	out	of	xfce4	without	using	terminal	commands.
ConsoleKit	essentially	wraps	xfce4	in	a	session	with	some	extra	permissions.

Notice	that	pkg_add	will	stop	when	it	reaches	the	document	reader	Evince	and	offer	you	a	choice	of	two	versions	of
the	package,	each	compiled	with	different	configuratons...

#	pkg_add	evince
quirks-2.114	signed	on	2015-08-09T15:30:39Z
Ambiguous:	choose	package	for	evince
a							0:	
								1:	evince-3.16.1p0
								2:	evince-3.16.1p0-light
Your	choice:	2

Because	Evince	is	part	of	the	Gnome	Desktop	suite	of	programs,	choosing	option	1	will	pull	in	a	large	number	of
Gnome	libraries,	including	part	of	Nautilus	the	Gnome	file	manager.	Option	2	has	been	provided	by	the	packager
for	those	of	us	who	wish	to	use	Evince	to	read	pdf	files	with	a	different	desktop	or	window	manager.	The
functionality	appears	to	be	similar,	just	less	dependencies	on	other	parts	of	Gnome.

Firefox	is	a	much	more	popular	choice	for	the	Web	browser,	but	I	think	I	prefer	Seamonkey.	I	run	Seamonkey	with
the	no-script	plugin	and	with	options	set	in	a	very	conservative	way.	This	reduces	the	load	on	the	processor,	and
keeps	me	safe	on	the	Web.	The	venerable	xscreensaver	provides	desktop	blanking	and	locking	when	you	step	away
from	your	machine.

Some	of	the	more	complex	packages	-	especially	those	that	install	daemons	-	come	with	readme	files	installed	to
/usr/local/share/doc/pkg-readmes/.	It	is	best	to	skim	these	for	pointers	to	configuration.

Don't	reboot	yet.	You	need	to	configure	the	graphical	login	and	set	up	some	daemons.	See	step	4	below...

Step	4:	Use	/etc/rc.conf.local	to	enable	apmd	and	graphical	log-in

[top	[#top]]

Background	reading:	Comparison	of	Desktop	Environments
[https://en.wikipedia.org/wiki/Comparison_of_X_Window_System_desktop_environments]	,	ConsoleKit	Github
readme	with	definitions	[https://github.com/ConsoleKit2/ConsoleKit2]	,	xenodm	man	page
[http://man.openbsd.org/OpenBSD-6.1/xenodm]	and	the	package_readme	for	consolekit2	at	/usr/local/share/doc/pkg-
readmes/consolekit2-1.0.2p1	.

As	root	add	some	lines	to	/etc/rc.conf.local	to	enable	power	management	(apmd)	so	that	you	can	use	Fn-F4	to
suspend	your	thinkpad,	and	to	enable	the	graphical	log-in	manager	xenodm.	Xenodm	is	an	OpenBSD	fork	of	the
venerable	xdm.

#	nano	/etc/rc.conf.local
multicast_host=YES							#	Some	avahi	shenanigans
apmd_flags="-A"										#	Laptop	power	saving
xenodm_flags=""										#	Starts	xenodm	graphical	login
pkg_scripts="messagebus"	#	Enables	dbus/ConsoleKit	stuff

Then	as	user	add	an	.xsession	file	with	a	line	that	will	start	consolekit	so	that	you	can	shutdown	&c	from	within
xfce4.

$	cat	.xsession
exec	ck-launch-session	startxfce4

Reboot	and	you'll	get	the	xenodm	login	greeter.	When	you	log	in,	Xfce4	will	ask	you	to	specify	a	layout,	and	then
show	you	the	desktop.	One	unusual	feature	is	the	X	console	window	showing	on	Desktop	1	-	it	looks	like	a	small
terminal	window.	The	X	console	will	spit	out	messages	when	you	plug	in	e.g.	a	USB	stick.	Shutdown,	suspend	and
restart	should	work	from	the	xfce4	Logout	menu	item	-	check	they	are	not	greyed	out	and	that	they	work.

Step	5:	Use	/etc/doas.conf	to	allow	user	mounting	of	an	external	USB	stick
[top	[#top]]

Background	reading:	OpenBSD	FAQ	sections	10	(doas)	[https://www.openbsd.org/faq/faq10.html#doas]	,	14	(File
Systems	Intro)	[]	as	well	as	man	doas	and	man	mount.

You	must	use	doas	and	a	few	lines	in	/etc/doas.conf	to	allow	user	mounting	of	USB	sticks.	My	/etc/doas.conf	file	looks
like	this...

$	cat	/etc/doas.conf
#	http://daemonforums.org/showthread.php?t=9774
permit	nopass	keith	as	root	cmd	mount
permit	nopass	keith	as	root	cmd	umount

Once	OpenBSD	sources	the	doas.conf	file,	you	can	mount	and	unmount(say)	an	external	USB	thumb	drive	formatted
to	VFAT	like	this...

doas	mount	/dev/sd1i	/home/keith/usb		 #	mounts	my	USB	on	~/usb
doas	umount	/dev/sd1i		 	 	 #	un-mounts	the	drive

I	knew	that	my	USB	stick	corresponded	to	the	/dev/sd1i	device	because	I	ran	the	dmesg	command	after	plugging	the
USB	stick	in	and	waiting	a	few	seconds.	The	device	will	be	listed	in	the	last	few	lines	of	the	dmesg	output
something	like	this...

umass0	at	uhub0	port	2	configuration	1	interface	0	"Kingston	DataTraveler	112"	rev	2.00/1.00	addr	3
umass0:	using	SCSI	over	Bulk-Only
scsibus4	at	umass0:	2	targets,	initiator	0
sd1	at	scsibus4	targ	1	lun	0:		SCSI2	0/direct	removable	serial.0951162aFCC127195547
sd1:	14762MB,	512	bytes/sector,	30233588	sectors

Once	mounted,	you	can	use	a	graphical	file	manager	like	Thunar	to	copy	and	paste	files	to	and	from	your	storage
stick.	You	can't	unmount	the	USB	stick	from	Thunar,	remember	to	use	the	umount	/dev/sd1i	command	before
removing	the	USB	stick.

Step	6:	Use	xfce4-mount-plugin	and	an	/etc/fstab	entry	to	allow	graphical
mount/unmount	of	a	USB	thumb	drive
[top	[#top]]

Background	reading:	xfce4-mount-plugin	page	on	the	Xfce	Web	site	[http://goodies.xfce.org/projects/panel-
plugins/xfce4-mount-plugin]	.

A	note	on	how	disks	get	numbered:	My	laptop	has	SATA	hard	drive	as	its	fixed	disc,	and	that	device	will	appear
as	/dev/sd0	to	OpenBSD.	If	I	install	from	a	CD-ROM	and	don't	use	full	disk	encryption,	the	first	USB	stick	I	plug	in	will
appear	as	/dev/sd1.	If	I	do	use	hard	drive	encryption,	OpenBSD	will	be	using	a	softraid	disc	that	will	appear	as
/dev/sd1,	and	the	first	USB	stick	that	I	plug	in	will	appear	as	/dev/sd2.	The	safest	thing	to	do	when	following	the
instructions	in	this	step	is	to	run	the	mount	command	without	any	arguments.	That	gives	you	a	list	of	what	is
mounted	where...

$	mount
#	example	from	OpenBSD	with	hard	drive	encryption
#	and	installed	to	a	softraid	disc	at	/dev/sd1
/dev/sd1a	on	/	type	ffs	(local)
/dev/sd1k	on	/home	type	ffs	(local,	nodev,	nosuid)
/dev/sd1d	on	/tmp	type	ffs	(local,	nodev,	nosuid)
/dev/sd1f	on	/usr	type	ffs	(local,	nodev)
/dev/sd1g	on	/usr/X11R6	type	ffs	(local,	nodev)
/dev/sd1h	on	/usr/local	type	ffs	(local,	nodev,	wxallowed)
/dev/sd1j	on	/usr/obj	type	ffs	(local,	nodev,	nosuid)
/dev/sd1i	on	/usr/src	type	ffs	(local,	nodev,	nosuid)
/dev/sd1e	on	/var	type	ffs	(local,	nodev,	nosuid)
/dev/sd2i	on	/home/keith/usb	type	msdos	(local,	uid=1000,	gid=1000)

The	instructions	below	reflect	an	OpenBSD	installation	on	sd0	with	a	USB	stick	that	will	appear	at	sd1.

I	install	the	xfce4-mount	package	using	pkg_add,	and	then	add	an	to	the	XFCE4	panel	by	right-clicking	on	the
panel	and	selecting	Panel	|	Add	New	Items	and	searching	for	mount.

By	default,	xfce4-mount-plugin	lists	all	the	devices	including	the	default	local	hard	drive	including	all	the	partitions	on
sd0.	I	can	set	options	to	prevent	that	and	to	use	a	custom	mount	command.	Right	click	over	the	xfce4-mount	icon
and	select	Properties	|	File	Systems	tab.	I	just	added	the	pattern	/dev/sd0*	to	the	Exclude	specified	file	systems
textbox	so	my	local	drive	was	not	listed.

I	then	once	again	right-clicked	on	the	xfce4-mount	icon,	and	selected	Preferences	|	Commands	and	wrote	the
following	in	the	Custom	Commands	textboxes,	after	ensuring	that	the	Custom	Commands	checkbox	was	ticked...

doas	mount	%m
doas	umount	%m

Now	to	ensure	that	a	USB	stick	is	listed	in	the	xfce4-mount-popup	list,	you	have	to	add	a	line	for	the	device	to
/etc/fstab.	My	extra	line	looks	like	this	(adapted	from	the	examples	in	man	fstab...

/dev/sd1i	/home/keith/usb	msdos	rw,noauto	0	0

Using	an	fstab	entry	like	this	means	that	only	one	USB	thumb	drive	will	be	listed	and	available	with	mouse	clicks.	If
you	are	in	the	habit	of	using	several	USB	thumb	drives	then	just	experiment	with	different	lines	and	mountpoints

Thunar	has	volume	management	enabled	by	default,	so	mounted	drives	will	be	listed	on	the	left	hand	side	of	the
file	window	with	an	'eject'	icon	next	to	each	device.	Attempting	to	eject	a	mounted	drive	by	clicking	on	the	eject	icon
will	give	an	error	message	and	has	no	effect.	To	avoid	these	error	messages,	I	have	unticked	Enable	Volume
Management	in	the	Thunar	Preferences.	The	USB	devices	are	still	listed	but	with	no	eject	icon	next	to	them.

Step	7:	Set	up	updates
[top	[#top]]

Background	reading:	pages	about	following	the	-stable	branch	[http://www.openbsd.org/stable.html]	or	following
the	-current	branch	[http://www.bsdnow.tv/tutorials/stable-current-obsd]	,	and	the	OpenBSD	6.1	Errata
[https://www.openbsd.org/errata61.html]	page.

The	syspatch	command	provides	binary	updates	to	the	core	system.	Running	the	syspatch	command	without
arguments	while	connected	to	the	Internet	resulted	in	the	first	four	errata	for	OpenBSD	6.1	[]	being	installed	as
you	can	see	in	the	transcript	below.

$	su
Password:
#	syspatch
Get/Verify	syspatch61-001_dhcpd.tgz	100%	|**************|	71730							00:00				
Installing	patch	001_dhcpd
Get/Verify	syspatch61-002_vmmfpu.tgz	100%	|*************|		9377	KB				00:39				
Installing	patch	002_vmmfpu
Get/Verify	syspatch61-003_libress...	100%	|*************|	11391	KB				00:51				
Installing	patch	003_libressl
Get/Verify	syspatch61-004_softrai...	100%	|*************|		9356	KB				00:41				
Installing	patch	004_softraid_concat

M:Tier	sponsors	OpenBSD	and	has	provided	binpatches	for	the	packages	in	the	stable	release	for	use	together	with
the	openup	script.	Their	update	page	[https://stable.mtier.org/]	has	been	updated	for	OpenBSD	6.1,	and	they
recommend	using	openup	to	upgrade	packages	that	you	have	installed	in	addition	to	the	base	system.

Step	8:	Read
[top	[#top]]

Read	the	man	pages	and	the	package	readmes.	Putting	it	all	together	can	be	difficult	at	first	as	the	documents
reference	each	other,	but	it	gets	familiar	with	experience	and	experimentation	like	most	things.

Step	0a:	Install	OpenBSD	with	whole	drive	encryption	(advanced)

[top	[#top]]

Background	reading:	OpenBSD	FAQ	sections	14.1	[http://www.openbsd.org/faq/faq14.html#intro]	,	14.2
[http://www.openbsd.org/faq/faq14.html#fdisk]	and	14.3	[http://www.openbsd.org/faq/faq14.html#disklabel]	.	It	is
probably	better	to	try	this	after	you	have	worked	through	a	default	install	and	become	familiar	with	fdisk	and
disklabel.

I	like	to	use	an	encrypted	hard	drive	just	in	case	I	leave	this	laptop	on	the	bus	or	it	gets	stolen	by	a	petty	thief	who
does	not	realise	how	old	the	laptop	is.

OpenBSD	provides	encryption	through	its	bioctl	[http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-
5.8/man8/bioctl.8?query=bioctl&arch=i386&manpath=OpenBSD-5.8]	RAID	management	interface.	Essentially	you
create	an	encrypted	softraid	device	that	looks	like	another	disk	to	the	OpenBSD	system	and	then	create	the	file
system	partitions	within	that	device.	My	recipe	is	adapted	from	a	tutorial	by	David	Crupmton
[http://davidcrumpton.blogspot.co.uk/2013/11/openbsd-54-full-disk-encryption.html]	.

The	steps	below	assume	that	you	are	installing	onto	the	whole	of	the	single	hard	drive	using	a	SATA	interface	and
that	OpenBSD	sees	the	physical	hard	drive	as	sd0	and	the	USB	stick	I	booted	from	as	sd1.

1.	 Boot	from	the	installer	and	select	[S]hell	to	get	the	root	prompt	#
2.	 #	fdisk	-iy	sd0	initialises	the	disk
3.	 #	disklabel	-E	sd0	enters	the	partition	editor.	Once	in	the	disklabel	command	prompt	>...

type	?	to	see	a	list	of	the	commands	within	disklabel	(I	find	this	reassuring)
type	a	and	return	to	create	a	partition
type	a	and	return	to	create	the	sd0a	partition
accept	the	default	start	[64]	and	end	[size	of	disk]	as	the	size
type	RAID	as	the	partition	type
type	w	to	write	the	partition
type	q	to	quit	the	disklabel	program	and	return	to	the	root	prompt	#

4.	 #	bioctl	-c	C	-l	/dev/sd0a	softraid0	to	create	an	encrypted	RAID	device.	Enter	a	strong	passphrase	at	the
prompt,	and	then	enter	the	phrase	again	to	check	the	typing.	A	look	at	the	bioctl	man	page	will	clarify	the
option	letters	and	the	result	is	an	encrypted	RAID	device	that	looks	like	a	disk	to	the	disklabel	program.	The
encrypted	device	is	identified	as	sd2	on	my	system	because	sd1	is	the	USB	stick	that	I	booted	from	and	sd0	is
the	hard	drive	in	the	laptop.

5.	 #	exit	to	return	to	the	OpenBSD	installer
6.	 Work	through	the	installer	steps	until	the	"Available	disks	are:	sd0	sd1	sd2"	question	is	reached.	Select	the

softraid	device	sd2	and	specify	[W]hole	disk.	I	got	a	warning	after	this	step:	"MBR	is	not	showing	a	valid	signature,
ignoring	it"	but	everything	seems	to	be	working.

7.	 I	selected	[A]uto	partition	layout	and	got	the	usual	half	dozen	partitions	within	the	softraid	device	sd2.
8.	 Complete	the	rest	of	the	installer	steps	and	reboot	into	the	new	installation
9.	 Type	in	the	passphrase	at	the	prompt	just	after	the	kernel	loads	and	you	should	see	the	usual	default

OpenBSD	boot	dialogue
10.	 You	may	see	a	boot	message	something	like	"softraid	is	roaming	used	to	be	sd2	now	sd1	using	UUID.a"	where	UUID

is	some	long	random	disk	identifier.	The	USB	stick	I	installed	from	is	no	longer	connected	and	so	isn't	using	the
sd1	identifier,	so	that	identifier	is	allocated	to	the	encrypted	softraid	device.

The	swap	partition	is	within	the	encrypted	softraid	device	so	we	can	disable	OpenBSD's	default	encryption	of	the
swap	partition.	You	can	do	that	by	copying	the	sysctl.conf	file	from	/etc/examples/sysctl.conf	to	/etc/sysctl.conf	and
uncommenting	the	line	that	reads	vm.swapencrypt.enable=0.	My	commands	looked	like	this...

#	cp	/etc/examples/sysctl.conf	/etc/sysctl.conf
#	nano	/etc/sysctl.conf
vm.swapencrypt.enable=0	#	uncomment	this	line	or	just	add	this	line	to	empty	sysctl.conf	file
#	cat	/etc/sysctl.conf	|	grep	vm.s
vm.swapencrypt.enable=0	#	0=Do	not	encrypt	pages	that	go	to	swap

Step	1a:	Simple	wifi	script
[top	[#top]]

There	is	no	graphical	wifi	manager	available	on	OpenBSD.	Many	users	have	written	fancy	scripts	that	will
automatically	reconnect	and/or	list	the	strongest	available	wifi	signals.	I	like	this	little	script	that	runs	from	my	user
account	and	simply	automates	the	typing	in	of	the	ifconfig	commands.	None	of	the	network	related	configuration
files	are	changed	so	I	can	always	fall	back	on	the	ifconfig	commands	in	a	new	place.	The	script	itself	also	serves	as
a	reminder	of	the	syntax	of	the	commands.

$	cat	bin/wifi
#!/bin/sh
#	adapted	from	http://marc.info/?l=openbsd-tech&m=146490607627340&w=2	

if	[[$1	==	"home"]];	then
								doas	ifconfig	iwn0	nwid	home_wifi_name	wpa	wpakey	home_wifi_password	wpaprotos	wpa1,wpa2
								doas	dhclient	iwn0
fi

if	[[$1	==	"blackberry"]];	then
								doas	ifconfig	iwn0	nwid	phone_hotspot_name	wpa	wpakey	phone_hotspot_password
								doas	dhclient	iwn0

fi

The	script	requires	the	following	lines	to	be	added	to	/etc/doas.conf.

permit	nopass	keith	as	root	cmd	ifconfig
permit	nopass	keith	as	root	cmd	dhclient

Keith	Burnett,	6th	May	2017:	added	syspatch	command	output.

