
♻ Oliver	Smith's	next	day	job:
Recycle	old	smartphones	with	a	native	Linux	distribution!

home 	 about	/	faq 	 feedback 	 donate 	 rss

postmarketOS:	Aiming	for	a
10	year	life-cycle	for	smartphones

2017-05-26 /	8	min

Introduction	post	to	postmarketOS,	a	touch-optimized,	pre-configured	Alpine	Linux	with	own
packages,	that	can	be	installed	on	smartphones.	(Not	usable	for	most	people	yet!)

Update:	Alpine	Linux	developers	do	not	see	their	distribution	as	"GNU/Linux",	so	I	won't	be	using	this	term	for	Alpine	or	pmOS
anymore.	One	of	these	developers,	^7heo,	helped	me	to	reword	this	article	and	other	pages	on	this	blog	accordingly,	thank
you!

Index
Minimalistic	Linux	distributions	run	fine	on	ten	year	old	PCs.

Why	are	Android/Linux	phones	different?

We	can	fix	this	as	a	community.

postmarketOS	architecture

Prototype

pmbootstrap

Future	goals	and	where	you	could	help

There	is	so	much	more...

Minimalistic	Linux	distributions	run	fine	on	ten	year	old

PCs.

It	is	2017.	Pick	an	average	PC	from	2007	and	install	a	minimal	Linux	based	operating	system.	You	will

be	able	to	do	basic	computing	tasks	(eg.	surfing	the	web,	reading	E-Mails,	listening	to	music,	chatting)

just	like	on	an	expensive	modern	PC.	You	will	even	get	security	updates,	so	your	old	computer	is

protected,	just	like	as	a	new	one.

Why	are	Android/Linux	phones	different?

Androids	architecture	is	based	on	forking	(one	might	as	well	say	copy-pasting)	the	entire	code-

base	for	each	and	every	device	and	Android	version.	And	then	working	on	that	independent,

basically	instantly	incompatible	version.	Especially	adding	device-specific	drivers	plays	an	important

role.

This	workflow	makes	it	next	to	impossible	to	patch	all	Android	devices	with	security	updates	in	time	or

at	all	(Stagefright	vulnerabilities	for	example	rendered	one	billion	devices	vulnerable).	And	even	if	the

vendor	provides	updates,	it	will	only	be	for	a	limited	time	and	then	you	must	buy	a	new	device	to	get

security	updates	or	the	latest	Android	version.	How	convenient!

Alright,	so	there	is	the	LineageOS	community,	which	provides	weekly	updates	for	an	impressive

number	of	smartphones.	They	provide	a	practical	solution	today,	and	I	am	very	grateful	for	that.

However,	such	Android	based	projects	will	always	run	behind	Google	and	the	phone	industry,	fixing

only	symptoms	but	never	the	root-cause.

This	is	just	the	tip	of	the	iceberg.	Android	has	way	more	problems,	read	Cascardo's	GNU	on
Smartphones	(part	II)	for	more	nightmares.

We	can	fix	this	as	a	community.

Here	is	the	solution:	Bend	an	existing	Linux	distribution	to	run	on	smartphones.	Apply	all	necessary

changes	as	small	patches	and	upstream	them,	where	it	makes	sense.

Of	course	I	am	not	the	only	one,	that	came	to	this	conclusion	-	especially	in	the	last	few	weeks	with

the	Halium	project	rising	(greetings!).	I	am	all-in	for	working	together	—	sharing	udev	rules,	merging

Android	kernels	together,	whatever	makes	sense!

postmarketOS	architecture

I'm	working	on	an	Alpine	Linux	based	distribution	called	postmarketOS	where	each	phone	will	have

only	one	unique	package	—	all	other	packages	are	shared	among	all	devices.

These	device-$vendor-$name	packages	contain	a	so-called	/etc/deviceinfo	file,	which	describes	what

makes	the	device	special:	SD	card	availability,	which	flash	software	to	use	and	other	information.	The

file	format	is	not	stable	yet,	and	once	we	have	common	kernels	for	multiple	devices,	I'd	like	to	include

the	required	modules	and	dtb	name.

And	just	to	make	it	clear,	postmarketOS	does	not	fit	the	Halium	model,	as	it	avoids	the	Android	build

system	entirely	and	does	not	run	any	part	of	the	Android	userspace	next	to	its	more	or	less	typical

Linux	userspace.	(At	least	not	in	the	regular	install,	but	it	could	come	at	some	point	in	the	future	as
optional	compatibility	layer	for	Android	applications	if	someone	wants	to	work	on	it.	Personally,	I'd
rather	have	native	Linux	applications	(in	the	case	of	Alpine:	linked	against	musl,	dynamically	or
statically)	than	Android	apps	on	my	phone.)

Prototype

So	much	for	the	theory.	Practically	I	can	show	you	a	sophisticated	chroot/build/flash	tool	called

pmbootstrap	which	should	allow	fast	and	clean	development	progress,	both	in	porting	to	new

phones	and	in	implementing	hardware	support	for	the	existing	ports	(more	on	pmbootstrap	below).
That	is	also	where	most	of	the	time	went	during	development	so	far,	so	don't	expect	too	much	of

postmarketOS.	Most	drivers	don't	work	so	you	can't	make	phone	calls	or	use	the	WiFi.	Nevertheless,

here	is	the	current	state	of	postmarketOS.

Devices:

Samsung	Galaxy	SII	(samsung-i9100)

Google	Nexus	4	(lg-mako)

Features:

Encrypted	root	file	system	(password	needs	to	be	typed	in	via	USB	telnet	right	now)

Installation	on	SD	card	or	internal	memory

Weston	with	working	touchscreen

Weston	demos	work	performantly	(without	proprietary	3D	acceleration!)

SSH	access	via	USB

Kernels	compiled	from	LineageOS	source

Clean	package	manager	based	installation

Generally	speaking,	the	samsung-i9100	port	works	better	than	the	lg-mako	port.	The	latter	has	some

strange	driver	bugs.	The	boot	splash	images	only	appear	for	a	second,	XWayland	does	not	work	there

and	the	colors	in	Weston	are	all	red.	I	even	had	to	patch	Weston	before	it	worked	at	all.	Without	the

patch	it	assumes	it	should	draw	with	0	Hz	—	in	other	words:	Never	;)

It	should	be	noted,	that	the	Replicant,	the	free	software	clone	of	Android,	also	targets	the	samsung-

i9100	and	has	open	source	user-space	drivers	for	the	modem,	which	I	plan	to	package	for

postmarketOS/Alpine	Linux.

pmbootstrap

Technical	details	incoming!	If	you're	not	into	that,	skip	this	section.

Alpine	Linux	is	really	small.	A	base	installation	is	only	about	6	MB	in	size	and	takes	not	more	than	a	few

seconds	to	extract!	Thanks	to	this	characteristic,	I	was	able	to	write	a	bootstrap	program	that

abstracts	everything	in	chroots	and	therefore	basically	runs	on	top	of	any	Linux	distribution	(GNU-

based	or	not),	which	has	Python	3	and	the	openssl	command	line	program	available.

Consequently,	the	host	system	does	not	get	touched	when	installing	the	required	programs	(fastboot

etc.)	and	your	distribution	doesn't	even	need	to	have	them	packaged.

Quick	feature	rundown:

Chroot	setup	(with	distro-independent	QEMU	user	emulation):

x86_64*	(building,	flashing,	...)

armhf*	(building)

armhf*	(target	rootfs)

Clean	chroot	shutdown	(umount)	and	zapping

Build	software	as	packages:

Wraps	abuild,	the	"light	version	of	makepkg"

Alpine	Linux'	APKBUILDs	are	very	similar	to	Arch	Linux'	PKGBUILDs

Cross-compile	all	armhf-packages:

Linux	Kernel:	build	with	cross-compiler	in	x86_64	chroot

Other:	build	in	armhf	chroot,	use	cross-compiler	with	distcc	from	x86_64	chroot	(alarm-

style)

Use	Alpine	Linux'	shipped	modern	gcc,	no	pre-built	Android	toolchain

Effective	caching	out	of	the	box	(survives	chroot	zaps):

ccache	(also	works	with	distcc/cross-compiler)

Alpine	Linux	package	cache

Installation	targets:

Raw	image	file	(flash	as	"system"	partition)

SD	card

Flasher	abstraction:

fastboot

heimdall

...	really	easy	to	add	more!

Logging:

all	shell	commands	executed	are	logged	in	an	extra	file

readable	overview	is	displayed	on	the	screen

Security:

Initial	package	manager	download

Signature	verification	with	openssl	against	keys	shipped	with	pmbootstrap

Minimum	installed	version	check	(for	downloaded	package	and	version	reported	by	the

extracted	binary)

All	executed	shell	commands	get	properly	escaped	with	Python's	built-in	shlex

Working	testcases	for	the	above	two	points

Only	using	root	rights	where	necessary	(through	sudo)

No	default	passwords	in	the	installation:	The	install	action	asks	for	the	user's	and	for	the

root	partition	password.

*	x86_64/armhf:	Example	architectures	for	host/target.	The	code	is	generic,	so	it	should	work	with	any	architectures

supported	by	Alpine	Linux.

Future	goals	and	where	you	could	help

Rough	direction	of	where	I'd	like	postmarketOS	to	head	to.	In	case	you're	a	hacker	who	wants	to	help,

feel	free	to	do	so.	But	please	write	into	the	tracker	before	starting	serious	work.	This	way	we	can

make	sure,	that	we	do	not	have	redundant	work.

Devices

Pick	an	old	Android	device,	that	you	don't	need	anymore	and	start	porting	postmarketOS	for	it.	It

should	be	pretty	straight	forward.	One	device-*	package,	one	for	the	kernel,	calibrate	the

touchscreen,	and	the	demos	should	more	or	less	work	already!

If	you're	feeling	adventurous,	try	a	non-Android	device.	How	about	iPhones?	I'll	probably	be	working

on	a	port	for	at	least	one	non-Android	device	myself	for	demonstration	purposes.

Drivers

Fix	the	lg-mako	screen	colors	and/or	make	the	following	peripherals	work:

WiFi

Audio

Modem	(Phone	calls,	mobile	internet)

Hardware	buttons	(Volume	keys,	home	button)

Camera

...

In	most	cases,	the	drivers	are	already	provided	by	the	Android/LineageOS	kernels,	that	we	currently

use	and	only	need	to	be	configured	in	the	userspace	(for	example	with	udev	rules).

The	long	time	goal	is	using	the	mainline	kernel.

Phone	interface

Package	a	Linux-based	phone	interface.	Plasma	mobile	seems	to	be	the	most	complete	one	right	now

(although	still	not	stable).	But	I'd	also	be	interested	in	ubports	(fork	of	the	discontinued	Ubuntu	Touch)

once	it	matures.	Or	maybe	writing	a	minimal	Android-like	interface	based	on	libweston.

From	what	I	understand,	the	SailfishOS	interface	is	closed	source,	so	that	will	not	be	an	option.

postmarketOS	is	developed	in	the	spirit	of	regular	Linux	distributions,	so	there's	no	problem	in	having
multiple	phone	interfaces	(just	like	KDE/Gnome/XFCE/...)	and	let	the	user	choose.

Security

Great	care	has	been	taken	to	make	pmbootstrap	safe,	as	it	will	run	on	productive	systems	of

postmarketOS	developers.	This	is	not	the	case	for	postmarketOS	in	its	current	proof-of-concept	state

(Weston	runs	as	root,	...)	so	we	must	work	on	that	before	it	can	be	used	in	real	life.	Even	better	would

be	privilege	separation	throughout	the	entire	OS.

There	is	so	much	more...

...but	the	blog	post	is	long	enough	as	it	is,	so	I'll	wrap	it	up.	Thanks	for	reading,	thanks	to	my	friends

who	reviewed	earlier	versions	of	this	blog	post.	Thanks	to	Replicant,	LineageOS,	Halium.	Together,	we

can	make	the	vision	of	long-lasting,	open	source	smartphone	operating	systems	a	reality!

Tell	your	friends!

If	you	want	to	read	more,	make	sure	to	subscribe	to	the	RSS	feed	and/or	watch	the	project	on	GitHub.

Comments:	reddit,	Hacker	News

