
Low-Budget	Password	Strength	Estimation	 https://www.usenix.org/conference/use…

data-scripts doc	tweak:	make	usage	in	data-scripts	consistent	with	filenames	in	data/ Nov	10,	2015

data skip	non-unicode	top	passwords	in	xato.	(this	only	skips	one	pw	curre… Nov	9,	2015

demo add	password	feedback	to	demo Oct	29,	2015

dist latest	dist	build Feb	7,	2017

src make	REFERENCE_YEAR	dynamic Feb	5,	2017

test Add	more	debug	info	in	test-matching Nov	30,	2016

.gitignore re-include	src	in	npm	package,	exclude	lib	from	git Aug	12,	2015

.npmignore README	update	for	browserify/webpack.	add	.git	and	demo	to	.npmignore Aug	13,	2015

.travis.yml fix	broken	pull	requests:	remove	saucelabs	from	continuous	integratio… Sep	24,	2016

.zuul.yml fix	broken	pull	requests:	remove	saucelabs	from	continuous	integratio… Sep	24,	2016

LICENSE.txt Update	license	range Feb	23,	2016

README.md Fix	broken	demo	link	in	README Oct	13,	2017

bower.json bower.json	packaging	bug:	lib	->	dist.	 	#91 Aug	23,	2015

package.json 4.4.2 Feb	7,	2017

	README.md

___/\/___________________
_/\/\/\/\/__/\/__/\/____/\/\/\/__/\/__/\/__/\/________/\/\/\/___
_____/\/______/\/\/____/\/________/\/__/\/__/\/\/\/____/\/__/\/_
___/\/________/\/\/____/\/__________/\/\/____/\/__/\/__/\/__/\/_
_/\/\/\/\/__/\/__/\/____/\/\/\/______/______/\/\/\/____/\/__/\/_
__

buildbuild passingpassing 	

zxcvbn 	is	a	password	strength	estimator	inspired	by	password	crackers.	Through	pattern	matching	and
conservative	estimation,	it	recognizes	and	weighs	30k	common	passwords,	common	names	and	surnames
according	to	US	census	data,	popular	English	words	from	Wikipedia	and	US	television	and	movies,	and	other
common	patterns	like	dates,	repeats	(aaa),	sequences	(abcd),	keyboard	patterns	(qwertyuiop),	and	l33t	speak.

Consider	using	zxcvbn	as	an	algorithmic	alternative	to	password	composition	policy	—	it	is	more	secure,	flexible,
and	usable	when	sites	require	a	minimal	complexity	score	in	place	of	annoying	rules	like	"passwords	must	contain
three	of	{lower,	upper,	numbers,	symbols}".

dropbox / zxcvbn

Join	GitHub	today
GitHub	is	home	to	over	28	million	developers	working	together	to

host	and	review	code,	manage	projects,	and	build	software
together.

Dismiss

Sign	up

	379	commits 	2	branches 	30	releases 	32	contributors 	MIT

	master	 New	pull	request Find	file Clone	or	download	

	Fix	broken	demo	link	in	README Latest	commit	67c4ece	Oct	12,	2017lowe

fixes

https://github.com/dropbox/zxcvbn/tree/master/data-scripts
https://github.com/dropbox/zxcvbn/commit/92f5ce5e2969b3950ce1b45140ecd29dce65f4da
https://github.com/dropbox/zxcvbn/tree/master/data
https://github.com/dropbox/zxcvbn/commit/3bf5a6cf3aa916dabb4c4e73a6ae24277ab36170
https://github.com/dropbox/zxcvbn/tree/master/demo
https://github.com/dropbox/zxcvbn/commit/191e629b3a039f180c2ded658ebad7b8b0aa91cc
https://github.com/dropbox/zxcvbn/tree/master/dist
https://github.com/dropbox/zxcvbn/commit/06aed17e2fa5cf2a572eb5dc20f0ff737de01aca
https://github.com/dropbox/zxcvbn/tree/master/src
https://github.com/dropbox/zxcvbn/commit/7b4315333b99982ddf662eee86a73c5f0c2c2fc8
https://github.com/dropbox/zxcvbn/tree/master/test
https://github.com/dropbox/zxcvbn/commit/6f0c92416a84a1cc3922cc04e3cb21380f7c0e98
https://github.com/dropbox/zxcvbn/blob/master/.gitignore
https://github.com/dropbox/zxcvbn/commit/2159838c3cd20ad0cbdd0dd7e7597688c9910d96
https://github.com/dropbox/zxcvbn/blob/master/.npmignore
https://github.com/dropbox/zxcvbn/commit/e9403fd0ffdc0d2a2eb0792394f80403034f7978
https://github.com/dropbox/zxcvbn/blob/master/.travis.yml
https://github.com/dropbox/zxcvbn/commit/890ecc5ad691c183376f3e07f9c33c8294b4f342
https://github.com/dropbox/zxcvbn/blob/master/.zuul.yml
https://github.com/dropbox/zxcvbn/commit/890ecc5ad691c183376f3e07f9c33c8294b4f342
https://github.com/dropbox/zxcvbn/blob/master/LICENSE.txt
https://github.com/dropbox/zxcvbn/commit/c18369fd68dd77d25a4ba240fa42c7c31c22c5a7
https://github.com/dropbox/zxcvbn/blob/master/README.md
https://github.com/dropbox/zxcvbn/commit/67c4ece9efc40c9d0a1d7d995b2b22a91be500c2
https://github.com/dropbox/zxcvbn/blob/master/bower.json
https://github.com/dropbox/zxcvbn/commit/ca089e90efa609a110ae755b0f8ba7f047713c89
https://github.com/dropbox/zxcvbn/issues/91
https://github.com/dropbox/zxcvbn/blob/master/package.json
https://github.com/dropbox/zxcvbn/commit/f0735425180b130d6c57efbc044a47c0c8f1fd65
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://travis-ci.org/dropbox/zxcvbn
https://saucelabs.com/u/dropbox-zxcvbn
https://github.com/dropbox
https://github.com/dropbox/zxcvbn
https://github.com/join?source=prompt-code
https://github.com/dropbox/zxcvbn/commits/master
https://github.com/dropbox/zxcvbn/branches
https://github.com/dropbox/zxcvbn/releases
https://github.com/dropbox/zxcvbn/graphs/contributors
https://github.com/dropbox/zxcvbn/blob/master/LICENSE.txt
https://github.com/dropbox/zxcvbn/find/master
https://github.com/dropbox/zxcvbn/commit/67c4ece9efc40c9d0a1d7d995b2b22a91be500c2
https://github.com/dropbox/zxcvbn/commit/67c4ece9efc40c9d0a1d7d995b2b22a91be500c2
https://github.com/dropbox/zxcvbn/commits?author=lowe
https://github.com/dropbox/zxcvbn/commit/ca089e90efa609a110ae755b0f8ba7f047713c89
https://github.com/lowe

More	secure:	policies	often	fail	both	ways,	allowing	weak	passwords	(P@ssword1)	and	disallowing	strong
passwords.
More	flexible:	zxcvbn	allows	many	password	styles	to	flourish	so	long	as	it	detects	sufficient	complexity	—
passphrases	are	rated	highly	given	enough	uncommon	words,	keyboard	patterns	are	ranked	based	on	length
and	number	of	turns,	and	capitalization	adds	more	complexity	when	it's	unpredictaBle.
More	usable:	zxcvbn	is	designed	to	power	simple,	rule-free	interfaces	that	give	instant	feedback.	In	addition
to	strength	estimation,	zxcvbn	includes	minimal,	targeted	verbal	feedback	that	can	help	guide	users	towards
less	guessable	passwords.

For	further	detail	and	motivation,	please	refer	to	the	USENIX	Security	'16	paper	and	presentation.

At	Dropbox	we	use	zxcvbn	(Release	notes)	on	our	web,	desktop,	iOS	and	Android	clients.	If	JavaScript	doesn't
work	for	you,	others	have	graciously	ported	the	library	to	these	languages:

zxcvbn-python 	(Python)
zxcvbn-cpp 	(C/C++/Python/JS)
zxcvbn-c 	(C/C++)
zxcvbn-rs 	(Rust)
zxcvbn-go 	(Go)
zxcvbn4j 	(Java)
nbvcxz 	(Java)
zxcvbn-ruby 	(Ruby)
zxcvbn-js 	(Ruby	[via	ExecJS])
zxcvbn-ios 	(Objective-C)
zxcvbn-cs 	(C#/.NET)
szxcvbn 	(Scala)
zxcvbn-php 	(PHP)
zxcvbn-api 	(REST)
ocaml-zxcvbn 	(OCaml	bindings	for	 zxcvbn-c)

Integrations	with	other	frameworks:

angular-zxcvbn 	(AngularJS)

Installation
zxcvbn	detects	and	supports	CommonJS	(node,	browserify)	and	AMD	(RequireJS).	In	the	absence	of	those,	it	adds
a	single	function	 zxcvbn() 	to	the	global	namespace.

Bower

Install	 node 	and	 bower 	if	you	haven't	already.

Get	 zxcvbn :

cd	/path/to/project/root
bower	install	zxcvbn

Add	this	script	to	your	 index.html :

<script	src="bower_components/zxcvbn/dist/zxcvbn.js">
</script>

To	make	sure	it	loaded	properly,	open	in	a	browser	and	type	 zxcvbn('Tr0ub4dour&3') 	into	the	console.

To	pull	in	updates	and	bug	fixes:

bower	update	zxcvbn

https://github.com/dropbox/zxcvbn#installation
https://github.com/dropbox/zxcvbn#bower
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://github.com/dropbox/zxcvbn/releases
https://github.com/dwolfhub/zxcvbn-python
https://github.com/rianhunter/zxcvbn-cpp
https://github.com/tsyrogit/zxcvbn-c
https://github.com/shssoichiro/zxcvbn-rs
https://github.com/nbutton23/zxcvbn-go
https://github.com/nulab/zxcvbn4j
https://github.com/GoSimpleLLC/nbvcxz
https://github.com/envato/zxcvbn-ruby
https://github.com/bitzesty/zxcvbn-js
https://github.com/dropbox/zxcvbn-ios
https://github.com/mickford/zxcvbn-cs
https://github.com/tekul/szxcvbn
https://github.com/bjeavons/zxcvbn-php
https://github.com/wcjr/zxcvbn-api
https://github.com/cryptosense/ocaml-zxcvbn
https://github.com/ghostbar/angular-zxcvbn
https://nodejs.org/download/
http://bower.io/

Node	/	npm	/	MeteorJS

zxcvbn	works	identically	on	the	server.

$	npm	install	zxcvbn
$	node
>	var	zxcvbn	=	require('zxcvbn');
>	zxcvbn('Tr0ub4dour&3');

RequireJS

Add	 zxcvbn.js 	to	your	project	(using	bower,	npm	or	direct	download)	and	import	as	usual:

requirejs(["relpath/to/zxcvbn"],	function	(zxcvbn)	{
				console.log(zxcvbn('Tr0ub4dour&3'));
});

Browserify	/	Webpack

If	you're	using	 npm 	and	have	 require('zxcvbn') 	somewhere	in	your	code,	browserify	and	webpack	should	just
work.

$	npm	install	zxcvbn
$	echo	"console.log(require('zxcvbn'))"	>	mymodule.js
$	browserify	mymodule.js	>	browserify_bundle.js
$	webpack	mymodule.js	webpack_bundle.js

But	we	recommend	against	bundling	zxcvbn	via	tools	like	browserify	and	webpack,	for	three	reasons:

Minified	and	gzipped,	zxcvbn	is	still	several	hundred	kilobytes.	(Significantly	grows	bundle	size.)
Most	sites	will	only	need	zxcvbn	on	a	few	pages	(registration,	password	reset).
Most	sites	won't	need	 zxcvbn() 	immediately	upon	page	load;	since	 zxcvbn() 	is	typically	called	in	response	to
user	events	like	filling	in	a	password,	there's	ample	time	to	fetch	 zxcvbn.js 	after	initial	html/css/js	loads	and
renders.

See	the	performance	section	below	for	tips	on	loading	zxcvbn	stand-alone.

Tangentially,	if	you	want	to	build	your	own	standalone,	consider	tweaking	the	browserify	pipeline	used	to	generate
dist/zxcvbn.js :

$	browserify	--debug	--standalone	zxcvbn	\
				-t	coffeeify	--extension='.coffee'	\
				-t	uglifyify	\
				src/main.coffee	|	exorcist	dist/zxcvbn.js.map	>|	dist/zxcvbn.js

--debug 	adds	an	inline	source	map	to	the	bundle.	 exorcist 	pulls	it	out	into	 dist/zxcvbn.js.map .
--standalone	zxcvbn 	exports	a	global	 zxcvbn 	when	CommonJS/AMD	isn't	detected.
-t	coffeeify	--extension='.coffee' 	compiles	 .coffee 	to	 .js 	before	bundling.	This	is	convenient	as	it	allows	 .js
modules	to	import	from	 .coffee 	modules	and	vice-versa.	Instead	of	this	transform,	one	could	also	compile
everything	to	 .js 	first	(npm	run	prepublish)	and	point	 browserify 	to	 lib 	instead	of	 src .
-t	uglifyify 	minifies	the	bundle	through	UglifyJS,	maintaining	proper	source	mapping.

Manual	installation

Download	zxcvbn.js.

Add	to	your	.html:

https://github.com/dropbox/zxcvbn#node--npm--meteorjs
https://github.com/dropbox/zxcvbn#requirejs
https://github.com/dropbox/zxcvbn#browserify--webpack
https://github.com/dropbox/zxcvbn#manual-installation
https://raw.githubusercontent.com/dropbox/zxcvbn/master/dist/zxcvbn.js
https://github.com/dropbox/zxcvbn#perf
https://raw.githubusercontent.com/dropbox/zxcvbn/master/dist/zxcvbn.js

<script	type="text/javascript"	src="path/to/zxcvbn.js"></script>

Usage
try	zxcvbn	interactively	to	see	these	docs	in	action.

zxcvbn(password,	user_inputs=[])

zxcvbn() 	takes	one	required	argument,	a	password,	and	returns	a	result	object	with	several	properties:

result.guesses												#	estimated	guesses	needed	to	crack	password
result.guesses_log10						#	order	of	magnitude	of	result.guesses

result.crack_times_seconds	#	dictionary	of	back-of-the-envelope	crack	time
																										#	estimations,	in	seconds,	based	on	a	few	scenarios:
{
		#	online	attack	on	a	service	that	ratelimits	password	auth	attempts.
		online_throttling_100_per_hour

		#	online	attack	on	a	service	that	doesn't	ratelimit,
		#	or	where	an	attacker	has	outsmarted	ratelimiting.
		online_no_throttling_10_per_second

		#	offline	attack.	assumes	multiple	attackers,
		#	proper	user-unique	salting,	and	a	slow	hash	function
		#	w/	moderate	work	factor,	such	as	bcrypt,	scrypt,	PBKDF2.
		offline_slow_hashing_1e4_per_second

		#	offline	attack	with	user-unique	salting	but	a	fast	hash
		#	function	like	SHA-1,	SHA-256	or	MD5.	A	wide	range	of
		#	reasonable	numbers	anywhere	from	one	billion	-	one	trillion
		#	guesses	per	second,	depending	on	number	of	cores	and	machines.
		#	ballparking	at	10B/sec.
		offline_fast_hashing_1e10_per_second
}

result.crack_times_display	#	same	keys	as	result.crack_times_seconds,
																											#	with	friendlier	display	string	values:
																											#	"less	than	a	second",	"3	hours",	"centuries",	etc.

result.score						#	Integer	from	0-4	(useful	for	implementing	a	strength	bar)

		0	#	too	guessable:	risky	password.	(guesses	<	10^3)

		1	#	very	guessable:	protection	from	throttled	online	attacks.	(guesses	<	10^6)

		2	#	somewhat	guessable:	protection	from	unthrottled	online	attacks.	(guesses	<	10^8)

		3	#	safely	unguessable:	moderate	protection	from	offline	slow-hash	scenario.	(guesses	<	10^10)

		4	#	very	unguessable:	strong	protection	from	offline	slow-hash	scenario.	(guesses	>=	10^10)

result.feedback			#	verbal	feedback	to	help	choose	better	passwords.	set	when	score	<=	2.

		result.feedback.warning					#	explains	what's	wrong,	eg.	'this	is	a	top-10	common	password'.
																														#	not	always	set	--	sometimes	an	empty	string

		result.feedback.suggestions	#	a	possibly-empty	list	of	suggestions	to	help	choose	a	less
																														#	guessable	password.	eg.	'Add	another	word	or	two'

result.sequence			#	the	list	of	patterns	that	zxcvbn	based	the
																		#	guess	calculation	on.

result.calc_time		#	how	long	it	took	zxcvbn	to	calculate	an	answer,
																		#	in	milliseconds.

https://github.com/dropbox/zxcvbn#usage
https://lowe.github.io/tryzxcvbn/

The	optional	 user_inputs 	argument	is	an	array	of	strings	that	zxcvbn	will	treat	as	an	extra	dictionary.	This	can	be
whatever	list	of	strings	you	like,	but	is	meant	for	user	inputs	from	other	fields	of	the	form,	like	name	and	email.
That	way	a	password	that	includes	a	user's	personal	information	can	be	heavily	penalized.	This	list	is	also	good	for
site-specific	vocabulary	—	Acme	Brick	Co.	might	want	to	include	['acme',	'brick',	'acmebrick',	etc].

Performance

runtime	latency

zxcvbn	operates	below	human	perception	of	delay	for	most	input:	~5-20ms	for	~25	char	passwords	on	modern
browsers/CPUs,	~100ms	for	passwords	around	100	characters.	To	bound	runtime	latency	for	really	long
passwords,	consider	sending	 zxcvbn() 	only	the	first	100	characters	or	so	of	user	input.

script	load	latency

zxcvbn.js 	bundled	and	minified	is	about	400kB	gzipped	or	820kB	uncompressed,	most	of	which	is	dictionaries.
Consider	these	tips	if	you're	noticing	page	load	latency	on	your	site.

Make	sure	your	server	is	configured	to	compress	static	assets	for	browsers	that	support	it.	(nginx	tutorial,
Apache/IIS	tutorial.)

Then	try	one	of	these	alternatives:

1.	 Put	your	 <script	src="zxcvbn.js"> 	tag	at	the	end	of	your	html,	just	before	the	closing	 </body> 	tag.	This
ensures	your	page	loads	and	renders	before	the	browser	fetches	and	loads	 zxcvbn.js .	The	downside	with	this
approach	is	 zxcvbn() 	becomes	available	later	than	had	it	been	included	in	 <head> 	—	not	an	issue	on	most
signup	pages	where	users	are	filling	out	other	fields	first.

2.	 If	you're	using	RequireJS,	try	loading	 zxcvbn.js 	separately	from	your	main	bundle.	Something	to	watch	out	for:
if	 zxcvbn.js 	is	required	inside	a	keyboard	handler	waiting	for	user	input,	the	entire	script	might	be	loaded	only
after	the	user	presses	their	first	key,	creating	nasty	latency.	Avoid	this	by	calling	your	handler	once	upon	page
load,	independent	of	user	input,	such	that	the	 requirejs() 	call	runs	earlier.

3.	 Use	the	HTML5	 async 	script	attribute.	Downside:	doesn't	work	in	IE7-9	or	Opera	Mini.

4.	 Include	an	inline	 <script> 	in	 <head> 	that	asynchronously	loads	 zxcvbn.js 	in	the	background.	Advantage	over
(3):	it	works	in	older	browsers.

//	cross-browser	asynchronous	script	loading	for	zxcvbn.
//	adapted	from	http://friendlybit.com/js/lazy-loading-asyncronous-javascript/

(function()	{

		var	ZXCVBN_SRC	=	'path/to/zxcvbn.js';

		var	async_load	=	function()	{
				var	first,	s;
				s	=	document.createElement('script');
				s.src	=	ZXCVBN_SRC;
				s.type	=	'text/javascript';
				s.async	=	true;
				first	=	document.getElementsByTagName('script')[0];
				return	first.parentNode.insertBefore(s,	first);
		};

		if	(window.attachEvent	!=	null)	{
				window.attachEvent('onload',	async_load);
		}	else	{
				window.addEventListener('load',	async_load,	false);
		}

}).call(this);

https://github.com/dropbox/zxcvbn#performance
https://github.com/dropbox/zxcvbn#runtime-latency
https://github.com/dropbox/zxcvbn#script-load-latency
https://rtcamp.com/tutorials/nginx/enable-gzip/
http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/
http://www.w3schools.com/tags/att_script_async.asp
http://caniuse.com/#feat=script-async

Development
Bug	reports	and	pull	requests	welcome!

git	clone	https://github.com/dropbox/zxcvbn.git

zxcvbn	is	built	with	CoffeeScript,	browserify,	and	uglify-js.	CoffeeScript	source	lives	in	 src ,	which	gets	compiled,
bundled	and	minified	into	 dist/zxcvbn.js .

npm	run	build				#	builds	dist/zxcvbn.js
npm	run	watch				#	same,	but	quickly	rebuilds	as	changes	are	made	in	src.

For	debugging,	both	 build 	and	 watch 	output	an	external	source	map	 dist/zxcvbn.js.map 	that	points	back	to	the
original	CoffeeScript	code.

Two	source	files,	 adjacency_graphs.coffee 	and	 frequency_lists.coffee ,	are	generated	by	python	scripts	in	 data-scripts
that	read	raw	data	from	the	 data 	directory.

For	node	developers,	in	addition	to	 dist ,	the	zxcvbn	 npm 	module	includes	a	 lib 	directory	(hidden	from	git)	that
includes	one	compiled	 .js 	and	 .js.map 	file	for	every	 .coffee 	in	 src .	See	 prepublish 	in	 package.json 	to	learn	more.

Acknowledgments
Dropbox	for	supporting	open	source!

Mark	Burnett	for	releasing	his	10M	password	corpus	and	for	his	2005	book,	Perfect	Passwords:	Selection,
Protection,	Authentication.

Wiktionary	contributors	for	building	a	frequency	list	of	English	words	as	used	in	television	and	movies.

Researchers	at	Concordia	University	for	studying	password	estimation	rigorously	and	recommending	zxcvbn.

And	xkcd	for	the	inspiration	❤	

https://github.com/dropbox/zxcvbn#development
https://github.com/dropbox/zxcvbn#acknowledgments
https://dropbox.com/
http://www.amazon.com/Perfect-Passwords-Selection-Protection-Authentication/dp/1597490415
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
http://www.concordia.ca/cunews/main/stories/2015/03/25/does-your-password-pass-muster.html
https://xkcd.com/936/

