The
Intercept_

IT’S IMPOSSIBLE TO PROVE YOUR LAPTOP HASN’T BEEN HACKED. | SPENT
TWO YEARS FINDING OUT.

Micah Lee

Digital security specialists like me get some version of this question all the time: “I think
my laptop may have been infected with malware. Can you check?”

We dread this sort of query because modern computer exploits are as complex, clever,
and hard to reason about as modern computers — particularly if someone has the
ability to physically access your device, as is routinely the case with laptops, especially
when traveling. So while it’s definitely possible to detect certain types of tampering, it
isn’t always trivial. And even in controlled environments, it’s impossible to give a laptop
a clean bill of health with full confidence - it’s always possible that it was tampered
with in a way you did not think to check.

The issue of tampering is particularly relevant for human rights workers, activists,
journalists, and software developers, all of whom hold sensitive data sought by
powerful potential attackers. People in these vocations are often keenly aware of the
security of their laptops while traveling — after all, laptops store critical secrets like
communication with sources, lists of contacts, password databases, and encryption keys
used to vouch for source code you write, or to give you access to remote servers.

Join Our Newsletter
Original reporting. Fearless journalism. Delivered to you.

'min —

https://theintercept.com/staff/micah-lee/
https://theintercept.com/2018/04/28/computer-malware-tampering/
https://theintercept.com/
https://theintercept.com/newsletter/?campaign=Article-In

How safe is it to leave your laptop in your hotel room while you’re attending sessions at
a conference? If you come back to find your laptop in a different position than where
you thought you left it, can you still trust it? Did someone tamper with it, did a hotel
housekeeper simply straighten up the items you left on your desk, or did you
misremember where you left it?

These questions typically can’t be answered with total confidence because clever
tampering can be so hard to detect. But I hoped I could get a sense of the risks with a
carefully controlled experiment. For the last two years, I have carried a “honeypot”
laptop with me every time I've traveled; this computer was intended to attract (and then
detect) tampering. If any hackers, state-sponsored or otherwise, wanted to hack me by
physically messing with my computer, I wanted to not only catch them in the act, but
also gather technical evidence that I could use to learn how their attack worked and,
hopefully, who the attacker was.

While traveling by air, I checked this laptop in my luggage to make it easily accessible to
border agents, both domestic and foreign, to tamper with if they chose to. When staying
in hotels, I left the laptop sitting on the desk in my room while I was away during the
day, to make sure that any malicious housekeepers with permission to enter my room,
or anyone else who broke into my room, was free to tamper with it if they chose to. I
also put a bunch of hacker stickers all over it, hoping that this would make it a more
enticing target.

A “notice of baggage inspection” from TSA?

https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/IMG_1651-1524597624.jpg?auto=compress%2Cformat&q=90

Over the duration of this experiment, I traveled to Europe three times and domestically in
the United States five times (including once to Puerto Rico). I found eight different notices
from the Transportation Security Administration informing me that my baggage had been
searched. I have no way of knowing how many times it had been searched by other
authorities who weren’t kind enough to leave me a note.

I never caught anyone tampering with this laptop. But the absence of any evidence of
tampering — and my obsessive thoughts about the various ways an attacker could have
evaded by detection — serve to underline how fraught the process of computer
forensics can be. If someone who makes their living securing computers thinks they
could have missed a computer infection, what hope is there for the average computer
user?

At the end of my experiment, I thought through all of the things that could have gone
wrong. Perhaps someone did tamper with my honeypot laptop, and my methodology
for detecting this wasn’t thorough enough to notice. Or maybe potential attackers
noticed that the laptop I carried with me and used at the conferences I was attending
was different than the one I left in my room, and decided against tampering with it in
case it was a trap.

But the most likely reason I didn’t catch any attackers is that no one tried to tamper
with my laptop. Hacking a target’s laptop by physically tampering with it while they’re
traveling probably happens only rarely because it’s so expensive — it may require travel,
physical surveillance, breaking and entering, and the risk of getting caught or breaking
the laptop is high. Compare this to cheap forms of hacking like email phishing: You can
target thousands of people at once from the comfort of your office, and the risk of
getting caught is much lower.

Still, I believe actively checking devices for tampering is worthwhile. You’ll never catch
an attacker in the act if you never look for evidence of their attacks. And just looking
for evidence, even if you don’t find any, increases costs for attackers: If they want to be
sure you won’t notice, they’re going to have to get more creative. I believe it’s useful to
explain the technology and the methodology I came up with to detect tampering and
share what I learned from the experience. Doing so gives a taste of just how many ways
there are to tamper with a laptop.

Photos of the honeypot laptop on the desk in several different hotel rodiisy

Evil Maid Attacks

If you don’t use full disk encryption on your laptop, anyone who gains physical access
to it, even for just a few minutes, can access all of your data and even implant malware
on your computer to spy on you in the future. It doesn’t matter how good your
password is because without encryption, the attacker can simply unscrew the case on

https://theintercept.com/2015/04/27/encrypting-laptop-like-mean/

your laptop, remove your hard disk, and access it from another computer.

Disk encryption does a great job of protecting your data in case you lose your laptop or
someone steals it from you. When this person tries accessing your data, they should be
completely locked out, so long as the passphrase you use to unlock your laptop is strong
enough that they can’t guess it.

But there is a sneaky class of attack, called “evil maid” attacks, that disk encryption
alone cannot protect against. Evil maid attacks work like this: An attacker (such as a
malicious hotel housekeeper, for example) gains temporary access to your encrypted
laptop. Although they can’t decrypt your data, they can spend a few minutes tampering
with your laptop and then leave it exactly where they found it. When you come back
and type in your credentials, now you have been hacked.

Exactly how an evil maid attack would work against your laptop depends on many
factors: the type of computer you use, what operating system you use, which disk
encryption software you use, and the configuration of firmware used to boot your
computer, firmware which I'll call “BIOS,” although it can also go by acronyms like EFI
and UEFI. Some computers have considerably better technology to prevent evil maid
attacks than others — for example, attackers have to do more advanced tampering to
hack a Windows laptop encrypted with BitLocker than they do to hack a Mac laptop
encrypted with FileVault (as of now, anyway) or a Linux laptop encrypted with LUKS.

The honeypot laptop I used, with red boxes around the hard disk and the SPI flash chip that stores the BIOS firmware.

Here are the main ways that an attacker could physically tamper with your laptop:

An attacker could modify data on your hard disk. “Full disk encryption,” the term
used to refer generically to systems like FileVault, really ought to be called “nearly full
disk encryption” because, except in a few specific circumstances, there’s always a small
part of a computer’s disk that isn’t encrypted.

When you power on your laptop, before your disk has been unlocked, your computer

https://theintercept.com/2015/03/26/passphrases-can-memorize-attackers-cant-guess/
https://twocanoes.com/secureboot-imac-pro/
https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/IMG_0538-1524597859.jpg?auto=compress%2Cformat&q=90

loads a program from this unencrypted part of your disk; it then runs the program, and
the program asks you to enter your passphrase. The program converts your passphrase
into an encryption key and tries to use it to unlock the disk. If you typed the correct
passphrase, the disk unlocks, and the rest of the operating system (which is stored in
the encrypted part of the disk) boots up. If you don’t know the right passphrase, there is
no way to unlock the disk.

But since the program that asks for your passphrase isn’t encrypted, it’s possible for an
attacker that physically has your laptop to replace it with a malicious version that looks
exactly the same to the user, but that takes extra steps. For example, after you
successfully unlock your disk, it might copy malware onto it that, after the computer
finishes booting up, automatically runs in the background, spying on what you’re
doing.

Computers that support “secure boot” or “verified boot,” such as Chromebooks and
Windows laptops with BitLocker, aren’t vulnerable to this. The BIOS can detect if the
unencrypted part of your disk has been tampered with, and if it has, it will refuse to
boot. MacBooks and laptops that run Linux could potentially be attacked in this way.

An attacker could replace your BIOS firmware with malicious firmware. When
you power on your computer, the very first program that your computer runs is your
BIOS firmware. The job of this program is to initialize all of your hardware - your
memory, disks, Wi-Fi adapter, video card, USB ports, and everything else — and then
ultimately boot an operating system, typically the one stored on your hard disk.

When you format your disk and install a new operating system on your computer, your
BIOS firmware doesn’t change. This is because this program isn’t stored on your hard
disk at all. Instead, it’s stored in a small chip on your computer’s motherboard called an
SPI flash chip.

This is why BIOS malware is so stealthy — you can’t get rid of it by formatting your hard
disk, and it can spy on you across operating systems, such as if you boot to a Tails USB
stick.

SPI flash chips have eight pins, including one for providing the chip with power, one for
reading data, and one for writing data to the chip. This means that it’s possible for an
attacker to power off your laptop, open up the case, and attach their own wires to the
SPI flash chip pins in order to power it on, and then read and write data to it (the chip
itself has no way of telling the difference between this, or just being part of the normal
computer). Using this technique, an attacker with physical access to your laptop can
replace your BIOS firmware with whatever malware they want.

The Italian spyware firm Hacking Team was caught selling such BIOS malware to its
customers (the company’s clients include foreign governments with troubling human
rights records). This specific firmware made sure that Windows was always infected
with malware. If you’re a target of a Hacking Team customer, even formatting your disk
and re-installing Windows would not remove the malware. As soon as you reboot, the
malicious BIOS firmware would re-infect the freshly installed Windows with the same
malware again.

https://tails.boum.org/
https://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-uses-uefi-bios-rootkit-to-keep-rcs-9-agent-in-target-systems/
https://theintercept.com/2015/07/07/leaked-documents-confirm-hacking-team-sells-spyware-repressive-countries/

Trying to dump BIOS firmware directly from the SPI flash chip by wiring it to a BeagleBone Black, a small and cheap
external computer.

An attacker could do other things to your hardware. Tampering with unencrypted
data on your hard disk, or replacing your BIOS firmware with malware, are the most
straightforward types of evil maid attacks, but the list of other potential attacks is only
limited by the attacker’s creativity and budget.

Here are a few examples:

e An attacker could potentially figure out a way of spying on your computer use by
replacing firmware on other components of your computer besides your BIOS, like
your processor, video card, network card, or hard disk.

e An attacker could install a hardware keylogger (they would plug your internal
keyboard into the keylogger, then plug the keylogger into the motherboard) with the
intention of stealing your laptop later, but with a record of your disk passphrase and
your other keystrokes.

e An attacker could completely replace your laptop with a different laptop of the same
model - they could even put your real laptop case with all your stickers and
scratches on the fake laptop, so that it looks exactly the same. When you type your
passphrase into this one though, it could send that passphrase over the internet to
the attacker, who could then use it to unlock your real disk.

When I decided to start this honeypot laptop project, I realized early on that I couldn’t
possibly detect every form of tampering. Because tampering with the data on the hard
disk or the BIOS firmware are the simplest and cheapest types of evil maid attacks to
conduct, and because attackers have limited resources and prefer low-hanging fruit
when it’s available, I decided to limit my detection to these two components. But who
knows? It’s possible that my honeypot laptop has a malicious component in it that I
never checked for.

https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/honeypot_bios_flash-1524598249.jpg?auto=compress%2Cformat&q=90

Re-assembling the computer.

Methodology

In February 2016, shortly before I was planning to fly to Spain for the Internet Freedom
Festival, I bought a Lenovo IdeaPad S210 Touch for about $700 to use as my honeypot
laptop.

Here was the plan. Before each trip, I would:

e Update all of the software on my honeypot laptop. (I wanted potential attackers to
see that I'm using up-to-date bootloader software stored on the small unencrypted
part of my disk, to believe that I actively use this computer.)

e Power off the laptop, and don’t power it on again until the trip was over. (Just by
powering on the computer, I risk slightly modifying data in my BIOS and hard disk.)

e Remove the hard disk from the laptop, attach it to an external USB enclosure, and
plug it into another computer, taking care not to modify any data on it. From there, I
could make a record of the state of the disk.

e Attach a BeagleBone Black, or BBB, a tiny $50 computer that’s great for hardware
hacking, to the SPI flash chip on the motherboard and use it to dump the BIOS
firmware, saving an exact copy of the data stored on the chip.

e Re-assemble the computer.

Then, during the trip, I would:

e Put the honeypot laptop in my checked luggage.
e Leave the honeypot laptop unattended in my hotel room.

Once I returned home from a trip, I would:

e Remove the hard disk from the laptop, plug it into another computer, and record the
state of the disk again. If even a single bit of data on the disk has changed, I could
detect it.

o Attach the BBB to the SPI flash chip and dump the BIOS firmware again. I could then
compare the firmware image I took from before my trip with the image I took after

https://internetfreedomfestival.org/
https://beagleboard.org/black
https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/IMG_1651-1-1524775041.jpg?auto=compress%2Cformat&q=90

it, to detect if it was tampered with.

Along the way, I planned to document everything: I'd take photos of my laptop in my
luggage, in hotels, and of the cards that TSA leaves informing me that they searched my
luggage; I'd keep a log of the state of my hard disk and BIOS before and after each trip;
and I’d keep a journal that includes all technical hurdles I ran into.

This is mostly how it went down, but I did run into a few snags. Bear with me, in the
following sections I venture much deeper into the technical weeds than I already have.

Checking the Hard Disk for Tampering

Before I proceed, there a few concepts I need to explain.

e Computer drives, whether disk- or flash- based, are organized into separate
“partitions.” For example, if you install Linux with disk encryption, your drive will
likely have two partitions: a small (often less than 1 gigabyte) unencrypted partition
called “/boot” — this is where the program that asks for your encryption passphrase is
stored, and where evil maids might put their malware — and the rest of the disk will
contain a large encrypted partition. After you unlock the encrypted partition with
the right passphrase, it will likely contain two other partitions inside, a “/” or “root”
partition that holds the rest of the files on the computer, and a “swap” partition
that’s only used when the computer is running low on memory. (I refer to both flash-
and disk- based storage drives as “disks” and “hard disks.”)

e There is a small amount of disk space at the beginning of every hard disk (which I
call the disk header) that’s reserved for a bootloader program. When you power on a
computer and boot from your hard disk, you run this program. In Linux, this
program simply starts running another program called “grub” that’s stored in your
unencrypted “/boot” partition. Grub is responsible for actually booting your
operating system. In order to detect evil maid attacks, it’s important to make sure the
disk header was not tampered with.

e In cryptography, a “hash function” is a one-way function that takes an input of any
size and outputs a fixed-size result called a “hash” or “checksum.” For example, with
SHA256, the hash function I use in this project, whether your input is 5 bytes long
(the size of the word “hello”) or 512 gigabytes long (the size of a hard disk), the
output will always be 32 bytes long. The same input will always lead to the same
output, but if you change the input in any way, even if only a single byte is different,
the content of the output will be entirely different (although the length will be the
same). You can use checksums to detect tampering.

When I started this project, I decided to dual-boot Windows 10 and Debian, a popular
Linux distribution, on my honeypot laptop - that is, I installed both operating systems
in different partitions on the same disk, and when I powered on the computer, I got to
choose which to boot to. But due to various time-consuming and annoying issues
related to Windows updates, I eventually chose to abandon Windows altogether and
just run Debian on my honeypot laptop, which made my job of detecting hard disk
tampering simpler.

Before each trip, I removed the disk from the honeypot laptop, plugged it into a USB
enclosure, and then plugged the USB disk enclosure into a different computer. The first
snag I ran into was that when I plugged in the USB disk, my computer automatically
tried to mount the partitions. This isn’t good - just by mounting the partitions, I risked
modifying the data. So I changed the settings on my computer (which was running

https://www.debian.org/

Linux) to disable automatically mounting external drives by following these
instructions.

Hard disk from the honeypot laptop, removed and plugged into a cheap external USB enclosure that can be plugged into a
separate computer.

Once the USB disk enclosure was attached to a computer other than the honeypot, I could
generate checksums of all of the disk’s partitions, as well as the disk header, using a tool
called sha256sum. In order to take a checksum of just the disk header, I used a tool called
dd to copy the disk header into a file, and then used sha256sum to take a checksum of
that file.

When I returned home from my trip, I repeated the same process to generate a new set
of checksums. Finally, I compared the checksums from before my trip with the
checksums from after my trip. If the checksums were not the same, then the data on
the disk must have changed — this would be evidence of tampering. If I discovered this, I
could then start looking into exactly what data had changed to discover how the
tampering worked.

For example, in March 2017, before flying to Amsterdam to attend a Tor Project meeting
with developers, volunteers, and advocates for the open-source anonymity network,
these were the checksums I generated:

4040239f4f0a2090c3cal5216b6e42522c4c3cd291f2c78f3c9e815f25be8295 «
ed6e8a3438e55d2aeae4ae691823c4005f7b5df0b62d856bd72d54fa00d886bb ,
db3d92ed1cfa8621e5673da32100d9117a3835¢c06a613cf9ac0f2f90ded404d1l7 ¢
cbeb585b6fa39a8425f57fa095ac17353a583bccd93532d65d9274da628a4c72 1

4 14

Ten days later, after I had returned from my trip, I generated another set of checksums.
They all turned out to be exactly the same, which allowed me to confirm that the data
on my hard disk had not changed at all.

https://access.redhat.com/solutions/20107
https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/IMG_0545-1524598450.jpg?auto=compress%2Cformat&q=90
https://help.ubuntu.com/community/HowToSHA256SUM
https://en.wikipedia.org/wiki/Dd_(Unix)
https://www.torproject.org/

Checking the BIOS for Tampering

When I started this project, I intended to dump BIOS firmware images externally using
a BeagleBone Black (explained previously) and a software tool called flashrom, which is
used for reading and writing data that’s stored on physical chips on circuit boards,
roughly following the instructions outlined here. But I quickly hit a snag, one that I
didn’t have the tools or knowledge of electronics to easily resolve.

The SPI flash chip that holds my honeypot laptop’s BIOS firmware has a pin for power
and another pin for ground. With the laptop powered off, I connected the power and
ground pins to my BBB, and then powered on the BBB.

I had hoped that the BBB would provide power to the SPI flash chip, allowing me to
read and write directly to that chip. But instead the BBB immediately powered off. It
turns out that, the way this specific laptop was wired, the power for the SPI chip was
not isolated from the rest of the system. In order to provide power to that chip, I also
needed to provide power to rest of the components of the motherboard, and that takes
more watts than my BBB was able to handle. This was annoying because one of the
reasons I chose a Lenovo computer as my honeypot laptop is because I have had success
doing this exact process on other Lenovo computers in the past, dumping the BIOS
firmware by connecting a BBB to the SPI flash chip.

So I decided to change strategies. Instead of dumping the BIOS firmware by connecting
wires directly from the SPI flash chip, I would instead use a piece of software called
chipsec, running on the honeypot laptop itself, to dump the firmware. However, this
strategy has a few downsides compared to directly connecting to the chip:

¢ In order to run chipsec, I needed to first power on the honeypot laptop and boot to
an operating system. It turns out that this process, booting up the computer, slightly
modifies the data stored in the BIOS firmware, which makes it more difficult to
check for tampering.

e It’s impossible to get a complete BIOS dump from within an operating system, but
you can get most of it.

e When I dump BIOS firmware using chipsec, it may be possible for sophisticated BIOS
malware to lie to chipsec, which could be used to prevent detection. (I have never
heard of BIOS malware that actually does this, though.)

In order to use chipsec, I set up a USB stick with the operating system Ubuntu (another
popular Linux distribution). With the hard disk removed from the honeypot laptop, I
plugged in my Ubuntu USB stick, powered on the laptop, and booted to Ubuntu. I put a
copy of chipsec on an SD memory card, which I also plugged into the laptop. From
there, I was able to run a specific chipsec command to dump the BIOS firmware and
save it to the SD card, which I could then inspect on my other computer.

https://www.flashrom.org/Flashrom
https://libreboot.org/docs/install/bbb_setup.html
https://github.com/chipsec/chipsec
https://www.ubuntu.com/desktop

Dumping the BIOS firmware using chipsec.

Here is the VirusTotal report from the first BIOS firmware image that I dumped using
chipsec from my honeypot laptop.

Once I successfully managed to dump the BIOS firmware, I came up with this plan:

e Before each trip, I would remove the hard disk from the laptop, boot to the Ubuntu
USB stick, and dump the BIOS firmware, making sure to save a copy of it on my
other computer.

e After I return from the trip, I would repeat the process, dumping a fresh BIOS
firmware image.

e Then I would generate checksums of the BIOS firmware images from before and
after my trip. If the checksums were exactly the same, I could confirm that my BIOS
was not tampered with.

Of course, it wasn’t this simple. It turns out, every time I booted my honeypot laptop to
an Ubuntu live USB stick and dumped the BIOS firmware, that firmware image had a
different checksum than the previous one. In order to investigate what was going on, I
used a program called UEFITool. This is a graphical program that lets you load BIOS
images, view and edit what data is stored inside, and extract data into separate files.

https://www.virustotal.com/en/file/2e3263fa904729c3c4d416b7ee8d7cec21500a4c50f33a348140003aeef988e7/analysis/1456336870/
https://github.com/LongSoft/UEFITool
https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/honeypot_chipsec-1524598486.png?auto=compress%2Cformat&q=90

Inspecting BIOS firmware using UEFITool.

For this specific laptop, each BIOS firmware image is exactly 4 megabytes. Some of that
space is used to store the actual programs that make up the BIOS (an evil maid attacker
would replace these programs with malicious versions), and some of it is used to store
other data, such as saved BIOS settings.

Looking at two BIOS firmware images that had different checksums, I was able to use
UEFITool to extract the same components from both, and then generate new
checksums for those individual components to see if they matched. I discovered that
there was only one small part of the firmware images that differed, and that part did
not include any programs. It turns out, each time I powered on the honeypot laptop
and opened the boot menu to tell it to boot from my Ubuntu USB stick, it saved
information related to booting to a USB stick in that section of the firmware, and this
information was slightly different each time, which caused the firmware images to
always have different checksums.

So I amended my plan for detecting tampering in the BIOS firmware. To compare
firmware images from before and after my trip, I would have to open each image in
UEFITool, extract all of the components except for the one that I knew changed,
generate checksums for those components, and then compare those checksums to make
sure they matched.

What | Learned

Traveling with a honeypot laptop was a lot of work. It required spending a few hours
both before and after each trip if I hoped to actually catch an evil maid attacker in the
act. So after two years without catching anyone, I have decided to retire the project.

A tool exists today, that didn’t exist when I started the project, that makes it possible to
catch evil maid attackers in the act in a different way. Haven is an Android app,

https://theintercept.imgix.net/wp-uploads/sites/1/2018/04/honeypot_uefitool-1524598511.jpg?auto=compress%2Cformat&q=90
https://theintercept.com/2017/12/22/snowdens-new-app-uses-your-smartphone-to-physically-guard-your-laptop/

designed to run on a spare phone that you leave in your hotel room while you’re away,
perhaps sitting on top of your laptop. It uses all of its sensors — microphone, motion
detector, light detector, and cameras — to monitor the room for changes, logs everything
it notices, and can send Signal notifications to the phone you carry with you when it
detects a change. Haven isn’t perfect — there are plenty of false positives — but it gets
better all the time and is still likely to catch anyone attempting to tamper with the
laptop that’s sitting under the phone Haven is running on.

I was able to do this entire project with 100% free and open source software, thanks to
projects like Debian and Ubuntu and tools like dd, sha256sum, flashrom, chipsec, and
UEFITool. Other than the honeypot laptop itself, you can buy all of the hardware tools I
used, like screwdrivers, a USB enclosure, and a BeagleBone Black, for less than $100.

T hotg; t lapt in the luggage. 0 o
5 ° W-Ieon éllpaoen on t eesuuppao%t of readers like you to help keep our nonprofit
newsroom strong and independent. Join Us —

RELATED

Edward Snowden’s New App Uses Your Smartphone to Physically Guard

Your Laptop

How to Protect Yourself Against Spearphishing: A Comic Explanation

How to Use Signal Without Giving Out Your Phone Number

How Right-Wing Extremists Stalk, Dox, and Harass Their Enemies

https://theintercept.com/2017/12/22/snowdens-new-app-uses-your-smartphone-to-physically-guard-your-laptop/
https://theintercept.com/2017/11/19/how-to-protect-yourself-against-spearphishing-a-comic-explanation/
https://theintercept.com/2017/09/28/signal-tutorial-second-phone-number/
https://theintercept.com/2017/09/06/how-right-wing-extremists-stalk-dox-and-harass-their-enemies/
https://theintercept.com/donate/?campaign=70146000000ZE8TAAW

