
Nathan	Hurst’s	Blog
Thoughts	on	Software,	Technology,	and
Startups

«	Back	to	blog

LOGIN

LOGIN

Visual	Guide	to	NoSQL	Systems
There	are	so	many	NoSQL	systems	these	days	that	it's	hard	to	get	a	quick
overview	of	the	major	trade-offs	involved	when	evaluating	relational	and	non-
relational	systems	in	non-single-server	environments.	I've	developed	this	visual
primer	with	quite	a	lot	of	help	(see	credits	at	the	end),	and	it's	still	a	work	in
progress,	so	let	me	know	if	you	see	anything	misplaced	or	missing,	and	I'll	fix
it.

Without	further	ado,	here's	what	you	came	here	for	(and	further	explanation
after	the	visual).

Note:	RDBMSs	(MySQL,	Postgres,	etc)	are	only	featured	here	for	comparison
purposes.	Also,	some	of	these	systems	can	vary	their	features	by
configuration	(I	use	the	default	configuration	here,	but	will	try	to	delve	into
others	later).

As	you	can	see,	there	are	three	primary	concerns	you	must	balance	when
choosing	a	data	management	system:	consistency,	availability,	and	partition
tolerance.

Consistency	means	that	each	client	always	has	the	same	view	of	the
data.
Availability	means	that	all	clients	can	always	read	and	write.
Partition	tolerance	means	that	the	system	works	well	across	physical

Nathan	Hurst
I'm	on	the	technical	side	of
entrepreneurship	in	NYC.	I	love
programming,	board	games,
and	my	wife.	I	lead	engineering
at	the	world's	largest
educational	marketplace,
Teachers	Pay	Teachers.

Find	out	more	about	me	at
nahurst.com.

Posted	7	years	ago
March	15,	2010	at	4:17	AM

405074	views

Tags
visual
cap
data
comparison
nosql
database
guide

network	partitions.

According	to	the	CAP	Theorem,	you	can	only	pick	two.	So	how	does	this	all
relate	to	NoSQL	systems?

One	of	the	primary	goals	of	NoSQL	systems	is	to	bolster	horizontal	scalability.
To	scale	horizontally,	you	need	strong	network	partition	tolerance	which
requires	giving	up	either	consistency	or	availability.	NoSQL	systems	typically
accomplish	this	by	relaxing	relational	abilities	and/or	loosening	transactional
semantics.

In	addition	to	CAP	configurations,	another	significant	way	data	management
systems	vary	is	by	the	data	model	they	use:	relational,	key-value,	column-
oriented,	or	document-oriented	(there	are	others,	but	these	are	the	main
ones).

Relational	systems	are	the	databases	we've	been	using	for	a	while	now.
RDBMSs	and	systems	that	support	ACIDity	and	joins	are	considered
relational.
Key-value	systems	basically	support	get,	put,	and	delete	operations
based	on	a	primary	key.
Column-oriented	systems	still	use	tables	but	have	no	joins	(joins	must
be	handled	within	your	application).	Obviously,	they	store	data	by	column
as	opposed	to	traditional	row-oriented	databases.	This	makes
aggregations	much	easier.
Document-oriented	systems	store	structured	"documents"	such	as
JSON	or	XML	but	have	no	joins	(joins	must	be	handled	within	your
application).	It's	very	easy	to	map	data	from	object-oriented	software	to
these	systems.

Now	for	the	particulars	of	each	CAP	configuration	and	the	systems	that	use
each	configuration:

Consistent,	Available	(CA)	Systems	have	trouble	with	partitions	and
typically	deal	with	it	with	replication.	Examples	of	CA	systems	include:

Traditional	RDBMSs	like	Postgres,	MySQL,	etc	(relational)
Vertica	(column-oriented)
Aster	Data	(relational)
Greenplum	(relational)

Consistent,	Partition-Tolerant	 (CP)	Systems	have	trouble	with	availability
while	keeping	data	consistent	across	partitioned	nodes.	Examples	of	CP
systems	include:

BigTable	(column-oriented/tabular)
Hypertable	(column-oriented/tabular)
HBase	(column-oriented/tabular)
MongoDB	(document-oriented)
Terrastore	(document-oriented)
Redis	(key-value)
Scalaris	(key-value)
MemcacheDB	(key-value)
Berkeley	DB	(key-value)

Available,	Partition-Tolerant	 (AP)	Systems	achieve	"eventual	consistency"
through	replication	and	verification.	Examples	of	AP	systems	include:

Dynamo	(key-value)
Voldemort	(key-value)
Tokyo	Cabinet	(key-value)
KAI	(key-value)
Cassandra	(column-oriented/tabular)
CouchDB	(document-oriented)
SimpleDB	(document-oriented)
Riak	(document-oriented)

Self	promotion	and	Credits

If	you're	a	developer	and	looking	for	a	job	or	if	you're	hiring	developers
and	these	data	systems	are	important	to	you,	consider	coming	to	Hirelite:
Speed	Dating	for	the	Hiring	Process	on	Tuesday.
This	guide	draws	heavily	from	a	recent	Ruby	meetup	(by	Matthew	Jording
and	Michael	Bryzek)	and	a	recent	MongoDB	presentation	(given	by	Dwight
Merriman).
Thanks	to	DBNess	and	ansonism	for	their	help	with	validating	system
categorizations.
Thanks	to	those	who	helped	shape	the	post	after	it	was	written:	Stan,
Dwight,	and	others	who	commented	here	and	on	this	Hacker	News
thread.

Update:	Here's	a	print	version	of	the	Visual	Guide	To	NoSQL	Systems	if	you
need	one	quickly	(warning:	it's	not	all	that	pretty	and	I	may	not	keep	it	updated,
but	as	of	3/17/2010,	it's	current).

Upvote	 27 	 Tweet 	
Like	this	post?	 Subscribe	by	email	»

	93	responses

I'm	new	to	the	NoSql	movement,	but	I'm	wondering	where	a	graph	database	such	as
neo4j	fits	in.

—	ariejdl

I	believe	Neo4J	locks	nodes	and	edges	until	commit,	so	it	would	be	a	CP	system	with	a
graph	data	model.

—	Nathan	Hurst

MondoDB	has	consistency?	How	can	that	be	true	if	MondoDB	does	"lazy	writes"?
http://ivoras.sharanet.org/blog/tree/2009-11-05.a-short-time-with-mongodb.html

—	Stan	Harris

Stan,	I	am	on	the	fence	about	MongoDB.	Dwight	Merriman,	CEO	of	10gen	(the
commercial	MongoDB	backer),	says	that	MongoDB	is	headed	in	the	CP	direction
http://www.leadit.us/hands-on-tech/MongoDB-High-Performance-SQL-Free-Database

However,	from	what	I	understand,	MongoDB	does	not	currently	use	Paxos	or	2PC	to
provide	consistency.	I'll	look	in	to	this	a	bit	more	(thanks	for	the	link)	and	update	as
necessary.

—	Nathan	Hurst

For	me	sonesDB	is	the	hidden	champion	;)	for	complex	data	scaling.	real	Graph	based
DB,	object	persistence	(own	Graph	File-system),	complete	query	language..	maybe	its
the	missing	part	for	connecting	objects	(in	an	external	index?)..	take	a	look:
sones.com

—	Steven	Bailey

Nathan,	since	CouchDB	fully	supports	ACID	properties,	shouldn't	it	be	under
consistency?	http://couchdb.apache.org/docs/overview.html

—	Stan	Harris

Without	further	_ado_

—	Association	for	the	Preservation	of	the	English	Language

Thanks	APEL

—	Nathan	Hurst

This	is	a	great	topic	that	has	not	sufficiently	been	covered	yet.	A	few	comments:
-	mysql	isn't	really	a	distributed	system,	so	I	don't	know	where	it	really	belongs	on
here.	anyone	else	have	thoughts?	also	the	answer	is	complex;	master/slave
replication	in	mysql,	if	you	do	reads	on	the	slave,	is	eventually	consistent.	but
normally	as	a	single	server,	it's	"strong	consistent".
-	not	sure	but	i	thought	Riak	is	dynamo-base	and	thus	AP
-	with	CouchDB,	it	depends.	single	server	it's	strong	consistent,	like	almost	single
server	systems.	with	master-master	replication	in	action,	it's	AP.

—	dmerr

Regarding	MongoDB:
@stan:	i	think	of	CAP	as	someone	orthogonal	to	ACID	durability.	They	are	related,	but
fairly	separate	topics:	CAP	is	about	distributed	portion	of	the	system.	You	could	argue
a	system	without	full	durability	is	theoretically	inconsistent	period,	in	which	case,	there
is	no	where	to	put	it	on	this	chart.	So	I	think	best	thing	is	to	make	this	chart	about
distribution.	Plus,	single	server	durability	is	on	the	mongodb	roadmap:
http://blog.mongodb.org/post/381927266/what-about-durability

"CP"	is	right	for	MongoDB	-	it's	a	lot	like	BigTable	in	terms	of	sharding,	with	a	few
twists.	Currently	the	metadata	storage	is	updated	with	2	phase	commits	(so	strong
consistent).	Further	on	each	shard,	at	a	given	point	of	time,	all	writes	are	going	first	to
one	server	(although	over	time	the	server	in	charge	can	vary)	--	so	that's	strong
consistent	too.

—	dmerr

One	more	nuance.	"A"	is	labelled	as	"available	for	reads".	It	may	be	useful	to
differentate	between	available	for	reads	and	available	for	writes.
For	example	suppose	I	am	using	MySQL	and	3	data	centers:	1	master	and	2	slaves,	1
instance	at	each	DC.	The	network	partitions.	I	can	still	read	the	local	slave's	data,	but	I
can't	write	as	i	can't	reach	the	master.	So	reads	are	available,	and	writes	aren't.	Now,
perhaps	this	qualifies	as	eventually	consistent	as	the	data	i'm	reading	may	not	be	the
most	current.	It	is	however	a	consistent	snapshot	from	the	past.	It's	also	easy	to	do
with	a	conventional	db;	what	Dynamo	added	was	availability	for	writing.

I'm	not	sure	the	best	way	to	articulate	the	above,	but	throwing	up	the	topic	for
discussion.

—	dmerr

@dmerr	Actually	...	MongoDB	sharding	is	about	as	far	as	you	can	get	from	a	BigTable
architecture.	:)

—	LusciousPear

Hi	Nathan,
thanks	for	including	Terrastore	in	your	overview.

I	just	wanted	to	point	out	that	Terrastore	is	a	CA	or	CP	system	depending	on	server-to-
master	reconnection	parameters:	that	is,	Terrastore	can	be	configured	to	try	to
reconnect	servers	to	master(s)	for	a	given	time	window:	in	such	a	window,	the	system
will	behave	as	CA,	rather	than	CP.
Anyways,	the	default	configuration	is	to	behave	as	CP	(no	reconnection	attempts).

Hope	that	helps.
Cheers,

Sergio	B.

—	Sergio	Bossa

@LusciousPear	why	do	you	say	that?
it's	exactly	the	same	in	how	it	shards	--	it	has	"chunks"	("tablets"?)	which	have	key
ranges	that	are	stored	as	metadata.

it	is	very	different	from	bigtable	in	some	other	respects	-	such	as	the	storage	engine,
and	data	model	(JSON	rather	than	tabular)

—	dmerr

With	the	recently	announced	consistent-read	features,	SimpleDB	actually	lives	in	both
the	AP	and	the	CP	segments.

—	Mitch	Garnaat

@dmerr	Thanks	for	your	comments.	I	do	need	to	think	of	a	way	to	show	the	distinction
between	consistent	reads	and	writes.	I	also	need	to	depict	how	systems	can	choose
either	CP	or	AP	based	on	their	configuration.

—	nahurst

@dmerr	MySQL	clusters	allows	for	a	distributed	shared	nothing	architecture
Also	would	be	worth	mentioning	that	AsterData,	Vertica,	and	Greenplum	are	database
appliances;	and	are	highly	optimized	for	data	distribution;	all	three	employ	a	shared
nothing	architecture;	maintaining	consistency	during	loads.

—	ryanprociuk

I	am	not	sure	I	understand	how	ACID	fits	to	all	this.	My	educational	guess	would	be	no
one	of	this	system	supports	transactions	as	any	financial	organisation	would	demand.

—	Roman

Moreover,	Riak	is	better	categorized	as	AP,	with	optional	consistency	thanks	to
dynamic	tuning	of	required	reads	and	writes.
Hope	that	helps.
Cheers,

Sergio	B.

—	Sergio	Bossa

Nathan,	your	previous	comment	saying	you	were	going	to	update	CouchDB	has
disappeared!	...Now	I	don't	mind	if	you	delete	a	comment	as	long	as	you	explain	why,
so	that	us	kind	readers	who	took	the	time	to	read	and	comment	on	this	post	will
understand.	Thanks!

—	Stan	Harris

@dmerr	You	are	right.	Distributed	data	stores	are	fundamental	to	the	CAP	theorem.
But	help	me	understand	this:	Because	of	MongoDB	"lazy	writes"	a	client	could	be
informed	of	a	successful	write,	but	then	later	that	write	fails.	How	does	MongoDB
recover	from	this	and	become	consistent.	"Eventual	consistency"	still	means
consistency	at	some	point.	The	link	I	included	in	my	previous	comment	about
MongoDB	does	make	a	good	point	regarding	this.	And	I'm	not	trying	to	bash
MongoDB	at	all.	I	want	very	much	to	like	it.	But	"lazy	writes"	really	concern	me.

—	Stan	Harris

Stan,	thanks	for	keeping	me	honest	:-).	I'm	working	on	an	update	(including
CouchDB),	but	I'm	having	trouble	figuring	out	how	to	change	images	on	existing
Posterous	posts	(I	just	didn't	want	people	expecting	an	update	immediately	if	I	can't
figure	it	out).	Let	me	know	if	you	how.	I'm	awaiting	a	response	from	Posterous.

—	Nathan	Hurst

You	might	even	add	http://neo4j.org	to	the	CA	side	of	things.	Graph	Databases	are
hard	to	partition,	but	read	scale-out	with	eventual	consistency	is	there.

—	peterneubauer

Riak	should	be	on	the	AP	side	of	the	triangle,	it	is	influenced	by	Dynamo.

—	Sean	Cribbs

Nathan,	have	you	tried	using	Posterous	web	interface	for	editing?	Just	go	to	"manage"

then	click	on	the	post.	You	have	to	hover	your	mouse	near	the	title	to	get	the	"edit"
link.

—	Stan	Harris

@stan	MongoDB	is	adding	a	feature	where	you	can	block	on	the	write	until	its
replicated	to	N	slaves.	In	conjunction	with	replica	sets,	this	guarantees	that	write	be
saved	somewhere.	More	info	here:	http://blog.mongodb.org/post/381927266/what-
about-durability

—	ehwizard

From	the	comments	across	multiple	sources	and	emails	today,	I'm	making	the
following	updates:
-	text	updates	to	clarify	that	this	diagram	is	for	non-single-server	environments	(thus
I'm	going	to	keep	CouchDB	on	AP	per	@dmerr's	comments)
-	text	updates	to	clarify	that	systems	are	categorized	in	their	default	configurations.	In
the	future,	I'll	try	to	delve	into	multiple	configurations	(ex:	SimpleDB,	Terrastore,	Riak)
-	moving	Riak	to	AP
-	updating	the	definition	of	A	to	"each	client	can	always	read	and	write"
-	removing	the	sharding	reference	on	CA	systems

—	Nathan	Hurst

@ehwizard	That	is	a	good	direction	for	MongoDB.	But	until	they	get	to	that	point	it
shouldn't	really	be	listed	on	this	chart	under	consistency.	To	say	that	MongoDB
exhibits	consistency	and	CouchDB	does	not	on	this	chart	is	really	misleading.	At	least
in	my	opinion	:)

—	Stan	Harris

@stan	in	CAP	context,	strong	consistency	means	"one	copy	serializability"	[1].
durability	is	different;	the	A	and	C	of	ACID	i	think	relate	to	consistency,	and	the	D	to
durability.	albeit	it's	a	messed	up	acronym	with	lots	of	overlap.
[1]	Bernstein,	Goodman.	http://portal.acm.org/citation.cfm?id=806714

—	dmerr

Bigtable	is	actually	a	lot	more	like	AP	than	CP.	Each	individual	Bigtable	is	CP,	but	a
group	of	Bigtables	in	a	replication	setup	is	AP.	Even	with	a	complete	network	partition
between	Bigtables,	clients	can	continue	to	happily	read/write	from	their	local
Bigtables,	with	eventual	consistency	later.
And	of	course	since	"A"	is	almost	always	the	most	important	thing,	basically	every
production	service	at	Google	uses	multiple	replicated	bigtables	(and	is	designed	for
this),	thus	for	this	graphic	I	think	it	would	be	misleading	for	Bigtable	to	be	anywhere
but	AP.

—	Dan

@Dan	very	interesting.	how	are	conflicting	updates	reconciled?

—	dmerr

Can	anyone	explain	me	what	consistency	means	in	this	chart	?	I	am	working	with
RDBMS	systems	for	more	than	20	years.	And	consistency	always	meant	that	if	you
update	more	than	one	object	then	either	all	changes	will	be	saved	or	none.	In	other
words	you	won't	get	a	system	where	object	one	is	updated	and	object2	is	not.	This	is
guaranteed	by	transactions.	And	as	far	as	i	know,	MongoDB	does	not	have
trasnactions	spanning	more	than	one	object.	So	how	can	it	be	labeled	consistent	?

—	Vagif	Verdi

IIRC,	there	is	no	concept	of	a	conflicting	update,	since	update	isn't	a	Bigtable
operation.	You	are	either	setting	or	retrieving	data,	so	if	2	people	perform	a	"set"
operation	on	different	Bigtables,	they	will	be	replayed	in	some	consistent	order	for	all
the	Bigtables,	and	thus	the	latest	operation	will	win.	Of	course	since	timestamp
syncing	is	a	major	problem,	"latest"	doesn't	necessarily	guarantee	it	will	be	the
operation	that	actually	happened	latest	in	the	real	world,	but	it	normally	does.	What	is
guaranteed	is	that	after	all	is	said	and	done,	one	of	the	operations	will	win	across	all
the	Bigtables....	IE	eventual	consistency.
So	basically	in	a	worst	case	scenario	where	2	different	"set"	operations	occur	on	the
same	row	at	the	exact	same	time,	one	of	them	will	essentially	randomly	win	and	that
will	be	reflected	in	all	of	the	Bigtables	after	the	operation	is	replicated.

—	Dan

I	think	AP	Systems	are	quite	appealing	since	they	provide	great	scalability.	I	have	little
experience	with	those	so	my	question	is	which	databases	among	these	forces	the
updates	of	replication	to	be	atomic?

—	huangjs

no	no	no	...	Your	diagram	is	wrong.	Almost	no	one	chooses	CP	-	who	wants	a	database
that	is	unavailable?	BigTable	is	CA,	and	so	are	most	of	the	items	listed	under	CP.
BigTable	is	highly	consistent	and	highly	available	(machines	can	die	at	anytime)	but	all
machines	have	to	be	in	the	same	datacenter.

—	aaroncordova

@aaroncordova
There's	a	kind	of	blurry	line	between	availability	and	partition-tolerance,	but	Nathan	is
right	here:	many	systems	choose	CP	over	CA	because	choosing	CA	would	mean	to
potentially	block	the	whole	cluster	in	case	of	network	partitions.	Choosing	CP	instead
means	that	the	system	is	allowed	to	put	partitioned	nodes	"out"	of	the	cluster
(making	them	unavailable),	allowing	so	the	remaining	nodes	to	continue	working.
For	a	more	detailed	explanation:	http://pl.atyp.us/wordpress/?p=2521

Cheers,

Sergio	B.

—	Sergio	Bossa

In	response	to	the	first	reply	-	afaik	neo4j	doesn't	(yet)	natively	support	any	form	of
distribution,	so	CAP	is	entirely	irrelevant.	There	is	a	hint	on	the	site	that	it	supports
sharding,	but	a	brief	googling	session	didn't	turn	up	any	details.

—	Peter

Chad	Walters	(@chad_walters)	did	follow	up	on	this	article	in	some	tweets,	compilation
of	those	tweets	is	in	his	blog	post:	http://chadwa.wordpress.com/2010/03/16/twitter-
conversation-about-cap/

My	follow-up	comment:

I	believe	the	notion	of	Fault-Tolerance	lies	between	both	the	availability	and	partition
tolerance.	Best	systems	that	show	case	them	are	definitely	AP	systems,	which	are
actually	distributed	and	decentralized	systems	providing	us	an	eventual	consistency.

You	are	definitely	write	that	diagram	does	imply	somewhat	that	CA,	systems	are	more
available	vs	CP,	but	they	do	so	relying	on	a	fact	that	the	high	end	systems	used	to
serve	them	without	cost	of	partitioning	makes	system	more	available	vs.	a	grid	of	low-
end	servers	aka	a	distributed	way.

Summarizing,	I	second	Bradford	(@LusciousPear),	that	consistency	is	your	the	main
choice,	while	partitioning	and	availability	are	both	knobs	contributing	towards	different
level/	kind	of	faults	tolerance.	Best	to	treat	them	like	knobs,	and	NoSQL	systems	like
Dynamo,	Cassandra	and	Riak,	allow	us	to	do	that.	Depending	on	your	context	of
application	and	requirement	of	service	you	can	tune	those	knobs	and	have	best	of	all
three.

—	Ali	Sohani

Thanks	for	the	link	Ali.	That's	a	great	exchange.	I	really	appreciate	@LusciousPear's
point	"CAP	is	more	like	knobs	to	turn,	not	blocks	to	build	from."	I'll	try	to	think	of	a	way
to	incorporate	that	notion.

—	Nathan	Hurst

Dean,	from	a	quick	glance,	Ingres	VectorWise	looks	like	a	column-oriented	CA	system
(same	location	and	color	as	Vertica).

—	Nathan	Hurst

Re:	key-value	systems...	there	is	a	Python	implementation	called	y_serial:
http://yserial.sourceforge.net/	--	serialization	+	persistance	::	in	a	few	lines	of	code,
compress	and	annotate	Python	objects	into	SQLite;	then	later	retrieve	them
chronologically	by	keywords	without	any	SQL.	Most	useful	"standard"	module	for	a
database	to	store	schema-less	data.

Probably	most	suited	for	single	server	environment,	but	it	does	not	require	a	server

daemon.	Dead	simple	to	use	for	Python	apps.

—	code43

Nathan,	do	you	offer	printer-friendly	versions	of	your	blog	pages?	The	print	is
completely	messed	up.

—	Alok

Alok,	thanks	for	letting	me	know.	I	posted	a	pdf	at	the	bottom	of	the	post.

—	Nathan	Hurst

Hehe!	:-)	The	PDF	does	not	have	the	visuals	or	the	comments!	While	the	website
being	not	print-friendly	is	most	likely	not	your	fault,	I	think	people	should	pressurize
the	CMS	software	developers	to	keep	these	little	things	in	mind	when	writing	their
software!	I	wonder	why	they	do	this	to	begin	with	--	If	the	page	looks	right	in	the
browser	then	it	should	also	print	right	without	any	extra	effort	from	the	CMS	software
developer.	The	state	however	is	so	messed	up	that	stuff	that	should	be	working
without	any	effort	from	them	also	does	not	work!

—	Alok

I	agree	that	the	relational	model	and	the	key-value	model	are	different	data	models.
However,	I	cannot	have	any	clear	image	about	your	definition	of	the	"column-oriented"
data	model.	"they	store	data	by	column	as	opposed	to	traditional	row-oriented
databases"	is	just	an	approach	to	implement	a	"physical"	data	storage.	"Logical"	data
model	built	on	the	top	of	a	data	storage	is	a	completely	different	story.
For	instance,	Sybase	IQ	also	uses	such	a	"vertically	fragmented"	data	storage,	but	it	is
also	an	RDBMS	that	supports	SQL.	More	interesting	example	is	MonetDB.	The	core	of
the	MonetDB	server	is	just	a	vertically	fragmented	data	storage.	However,	on	the	top
of	this	data	storage	MonetDB	developers	have	developed	a	RDBMS,	a	native	XMLDB,
an	RDF	storage	and	a	spatial	DB	!	How	do	you	categorize	this	polymorphic	DBMS?

I	think	it	is	better	to	clearly	distinguish	between	logical	data	models	and	physical	data
models.	Otherwise	you	should	introduce	a	formal	definition	of	the	column-oriented
"logical"	data	model.

—	sugibuchi

I	propose	you	the	missing	Wakanda	which	may	be	considered	as	an	object-oriented
data	store	from	its	SSJS	API	and	maybe	also	as	a	Document-store	one	when	looking
at	its	REST	API	(some	people	we	shown	it	compared	its	data	store	to	CouchDB).	Here
some	talks	about	it:	
-	http://www.wakandasoftware.com/blog/nosql-but-so-much-more/
-	http://www.slideshare.net/alexandre_morgaut/wakanda-js-conf-eu-09-slideshare
-	http://jsconfeu.blip.tv/	(third	video)

—	amorgaut

What	about	a	NoSQLite	initiative?
I	really	miss	the	embedded	side.	AFAIK,	only	BerkeleyDB	(both	Java	and	C	editions),
Tokyo/Kyoto	Cabinet,	Neo4J	fill	this	gap	for	different	requirements.	Of	course,	I	know
about	good'ol	GDBM	and	the	various	fliesystem-based	serialization	mechanisms
dynamic	languages	provide,	but	some	points	such	as	replication,	speed	and	safety
are	always	nice	to	have.

—	Nando	Sola

...Not	to	mention	that	a	JSON	document-oriented	embedded	database	à	la	CouchDB
would	be	awesome.

—	Nando	Sola

Nice	Post	Nathan.	This	is	a	great	summary	that	will	be	very	useful	in	helping	me
evaluate	data	store	systems.

—	MightyByte

@MightyByte	Thanks!	Glad	it	was	helpful.

—	Nathan	Hurst

This	is	a	great	discussion,	thanks	to	all.	+1	on	sugibuchi's	request	for	better

distinction	between	logical	and	physical	data	models.	As	a	big	fan	of	the	relational
data	model,	I	wince	when	I	see	generalizations	about	traditional	relational	DB
implementations	that	imply	more	than	they	should	about	the	relational	model	itself.
And	I	smile	at	the	irony	of	the	NoSQL	movement's	unofficial	slogan	("select	fun,	profit
from	real_world	where	relational=false;")	because	it	implies	a	relational	model	itself
(ref.	http://en.wikipedia.org/wiki/Nosql).	In	fact,	relational	purists	know	SQL	barely
qualifies	as	a	relational	query	language	and	it	is	merely	one	of	those	quirks	of	history
that	SQL	is	the	dominant	query	language.	This	consideration	for	distinguishing
between	data	model	and	implementation	applies	equally	to	non-relational	DBs,	so	I
think	it	would	help	everyone	if	we	could	try	to	keep	them	separate	in	our
conversations.	I	personally	would	love	to	see	the	relational	data	model	creatively
applied	to	other	parts	of	the	CAP	universe.	And	I	would	love	for	critics	of	the	relational
model	to	familiarize	themselves	with	the	old	1970s	debates	about	navigational	and
relational	data	models,	so	that	we	avoid	rehashing	old	arguments.

Changing	topics...	consistency.	Am	I	right	that	the	C	in	CAP	is	a	combination	of	A/C/I/D
in	ACID?	If	so	that	is	unfortunate.	In	various	discussions	there	seem	to	be	at	least
three	interpretations	of	what	Consistency	means.	One	is	is	about	whether	multiple
updates	(that	are	related	to	each	other	and	thus	have	to	all	be	kept	consistent	with
each	other)	happen	in	an	all-or-nothing	(atomic)	fashion.	Another	is	about	whether
multiple	clients	see	the	same	data	values	modulo	time,	geography,	and	partitioning.
And	another	is	whether	data	that	is	stored	can	violate	various	rules	like	referential
constraints	or	value	constraints.	This	seems	to	be	a	source	of	wasted	energy,	but	I
don't	know	the	solution.

—	STH

@STH	-	great	points.	The	whole	NoSQL	movement	is	a	conglomerations	of	many
different	principles.	It	would	be	interesting	to	see	more	relation	systems	balance	on
different	sides	of	the	CAP	universe.
I	don't	have	a	good	answer	to	your	consistency	question.	Anyone	else?	I'll	have	to	get
back	to	you	on	it.

—	Nathan	Hurst

STH,	Nathan,
consistency	in	distributed	systems	(hence	in	NOSQL	systems)	is	all	about	the	order	of
read/write	operations	as	seen	by	the	clients.
That	is,	in	a	consistent	system	(such	as	MongoDB	or	Terrastore),	clients	are
guaranteed	to	read/write	the	latest	version	that	has	been	previously	written	(or	read
in	case	it	was	unmodified);	in	eventually	consistent	systems	(such	as	Cassandra	or
Riak)	clients	have	no	such	a	guarantee,	so	they	may	actually	read/write	stale	data.

So	it's	pretty	different	from	the	C	in	ACID,	which	refers	to	data	constraints,	and	is
maybe	more	a	mix	of	A	and	I,	where	atomicity	and	isolation	must	be	taken	in	the
context	of	a	fully	distributed	system.

HTH,
Cheers,

Sergio	B.

—	sbtourist

http://danweinreb.org/blog/improving-the-pacelc-taxonomy

—	shrusamira

This	is	a	great	resource.	Can	you	*please*	add	a	paragraph	to	defilne	ACID	(like	you
did	for	CAP).	Then	it's	all	on	one	page.	
Thanks!

—	still	learning

This	is	a	great	discussion	-	thanks	to	all	of	you!!!
I	guess	this	discussion	makes	clear	that	there	is	still	a	lot	to	clarify	in	categorizing	or
comparing	NoSQL-approaches	/	products.	I	have	just	stated	one	on	bigdata.de	too
(http://www.bigdata.de/2011/02/22/datenbank-technologien-fur-bigdata/	-	follow	the
links	to	find	the	englisch	original).

Furthermore	I	wonder	where	to	locate	ParStream	(www.parstream.com)	in	your
category-system.	ParStream	is	an	analytical	database	with	a	hybrid-data-store	(row
and/or	column),	using	a	highly	compressed	bitmap-index,	operates	MPP	on
distributed	environments	inlcuding	redundancy	and	automatic	rebalancing	and	import
and	updates	of	distributed	data,	provides	interfaces	for	SQL,	JDBC	and	a	C++API	and

offers	JOINS.	Currently,	it	does	not	offer	full	ACID-support	as	known	from	RDBMS.	
Anybody	who	can	help	me	with	the	classification.
Thanks

—	Michael	Hummel

Very	nice	graph!	Clear	but	informing,	I	like	:-)

—	Christian

great	post	!	and	good	intro	to	CAP	theorem.	thanks!

—	mathieuel

I	would	dare	to	put	on	few	points	that	have	been	"miss-visualized"	in	this	post.	I	have
not	ready	any	of	comments	so	I	may	be	repeating	some	issues	mentioned	above.
Cassandra	gives	you	total	power	for	consistency	level.	This	diagram	totally	lies	about
it.	HBase	and	Riak	when	quoted	here	also	suffers	with	same	issue	as	Cassandra.
Tokyo	cabinet	should	be	renamed	to	Tokyo	Tyrant.	I	would	recommend	any	author	to
have	hands	on	experience	before	writing	such	stuff.	For	what	I	see	from	your	post	is
that	only	RDBMS	are	CA	but	I	bet	I	can	produce	the	CA	effect	out	of	some	NoSQL
stores	(not	satisfying	C's	in	your	diagram).

—	Zohaib

I'm	new	to	NoSql.	But	I	see	that	joins	must	be	done	within	the	application.	So	why	go
for	the	NoSql	databases	if	Oracle	for	example	is	optimised	its	database	for	joins?
Where	can	I	read	more	whats	makes	it	so	scalable	and	faster.	What	misconceptions
should	a	SQL	user	like	me	be	aware	of?	What	mistakes	should	I	watch	out	for	when
learning	the	new	NoSql?

—	m_raoul

If	your	database	makes	it	hard	to	work	with	your	data,	than	use	another	datastore.
If	you	have	tables	to	join,	use	SQL.	But	if	these	are	only	a	few	tables	and	you
normalized	your	data	to	have	more	tables	to	index,	you	could	denormalize	your	data,
store	it	on	a	document-oriented	DB	and	forget	about	joins.

Or	do	you	store	lists	in	a	SQL	DB?	I	once	used	a	table	like	a	fifo	queue	and	it	was	a
really	stupid	decision,	because	I	had	to	rewrite	the	index	every	few	minutes.	Use	Redis
for	something	like	that.

—	Richard	Metzler

Print	hack:	invert	colors.

—	steakknifesteak

Be	great	to	see	MarkLogic	on	this	diagram.

—	mustard57

You	seem	to	be	missing	Aerospike	http://www.aerospike.com/

—	Ægir	Örn

I	was	just	researching	this	subject	and	noticed	a	difference	between	your	classification
of	Vertica	(CA)	and	what	Vertica's	blog	states	(CP).	I	know	it's	a	delicate	balance
between	the	3,	with	Partitioning	typically	being	a	guaranteed	option	in	most	NoSQL
databases.	Just	wanted	to	clarify!

Availability	–	Vertica	is	willing	to	sacrifice	availability	in	pursuit	of	consistency	when
failures	occur.	

^http://www.vertica.com/2012/09/13/a-feather-in-...

—	Tom	Kierzkowski

Another	great	example	of	a	NoSql	database	is	CryptonorDB	(cloud	-	mobile
database),	which	manages	the	storage	of	encrypted	data	and	the	key	is	managed
only	by	the	client.	
See	more	information	here:	http://cryptonordb.com/

—	Andreea

Your	Name

Email

Add	Website	URL	»

Your	Comment

	Notify	me	by	email	when	new	comments	are	added

27	visitors	upvoted	this	post.

Comment

