
	

Key	Reinstallation	Attacks
Breaking	WPA2	by	forcing	nonce	reuse

Discovered	by	Mathy	Vanhoef	of	imec-DistriNet,	KU	Leuven

INTRO 	 DEMO 	 DETAILS 	 PAPER 	 TOOLS 	 Q&A

I N T R O D U C T I O N
We	discovered	serious	weaknesses	in	WPA2,	a	protocol	that	secures	all	modern	protected	Wi-Fi	networks.	An
attacker	within	range	of	a	victim	can	exploit	these	weaknesses	using	key	reinstallation	attacks	(KRACKs).	Concretely,
attackers	can	use	this	novel	attack	technique	to	read	information	that	was	previously	assumed	to	be	safely
encrypted.	This	can	be	abused	to	steal	sensitive	information	such	as	credit	card	numbers,	passwords,	chat
messages,	emails,	photos,	and	so	on.	The	attack	works	against	all	modern	protected	Wi-Fi	networks.
Depending	on	the	network	configuration,	it	is	also	possible	to	inject	and	manipulate	data.	For	example,	an	attacker
might	be	able	to	inject	ransomware	or	other	malware	into	websites.

The	weaknesses	are	in	the	Wi-Fi	standard	itself,	and	not	in	individual	products	or	implementations.	Therefore,	any
correct	implementation	of	WPA2	is	likely	affected.	To	prevent	the	attack,	users	must	update	affected	products	as
soon	as	security	updates	become	available.	Note	that	if	your	device	supports	Wi-Fi,	it	is	most	likely	affected.
During	our	initial	research,	we	discovered	ourselves	that	Android,	Linux,	Apple,	Windows,	OpenBSD,	MediaTek,
Linksys,	and	others,	are	all	affected	by	some	variant	of	the	attacks.	For	more	information	about	specific	products,
consult	the	database	of	CERT/CC,	or	contact	your	vendor.

The	research	behind	the	attack	will	be	presented	at	the	Computer	and	Communications	Security	(CCS)	conference,
and	at	the	Black	Hat	Europe	conference.	Our	detailed	research	paper	can	already	be	downloaded.

D E M O N S T R A T I O N
As	a	proof-of-concept	we	executed	a	key	reinstallation	attack	against	an	Android	smartphone.	In	this	demonstration,
the	attacker	is	able	to	decrypt	all	data	that	the	victim	transmits.	For	an	attacker	this	is	easy	to	accomplish,	because
our	key	reinstallation	attack	is	exceptionally	devastating	against	Linux	and	Android	6.0	or	higher.	This	is	because
Android	and	Linux	can	be	tricked	into	(re)installing	an	all-zero	encryption	key	(see	below	for	more	info).
When	attacking	other	devices,	it	is	harder	to	decrypt	all	packets,	although	a	large	number	of	packets	can	nevertheless
be	decrypted.	In	any	case,	the	following	demonstration	highlights	the	type	of	information	that	an	attacker	can	obtain
when	performing	key	reinstallation	attacks	against	protected	Wi-Fi	networks:



Our	attack	is	not	limited	to	recovering	login	credentials	(i.e.	e-mail	addresses	and	passwords).	In	general,	any	data	or
information	that	the	victim	transmits	can	be	decrypted.	Additionally,	depending	on	the	device	being	used	and	the
network	setup,	it	is	also	possible	to	decrypt	data	sent	towards	the	victim	(e.g.	the	content	of	a	website).	Although
websites	or	apps	may	use	HTTPS	as	an	additional	layer	of	protection,	we	warn	that	this	extra	protection	can	(still)	be
bypassed	in	a	worrying	number	of	situations.	For	example,	HTTPS	was	previously	bypassed	in	non-browser	software,
in	Apple's	iOS	and	OS	X,	in	Android	apps,	in	Android	apps	again,	in	banking	apps,	and	even	in	VPN	apps.

D E T A I L S
Our	main	attack	is	against	the	4-way	handshake	of	the	WPA2	protocol.	This	handshake	is	executed	when	a	client
wants	to	join	a	protected	Wi-Fi	network,	and	is	used	to	confirm	that	both	the	client	and	access	point	possess	the
correct	credentials	(e.g.	the	pre-shared	password	of	the	network).	At	the	same	time,	the	4-way	handshake	also
negotiates	a	fresh	encryption	key	that	will	be	used	to	encrypt	all	subsequent	traffic.	Currently,	all	modern	protected
Wi-Fi	networks	use	the	4-way	handshake.	This	implies	all	these	networks	are	affected	by	(some	variant	of)	our	attack.
For	instance,	the	attack	works	against	personal	and	enterprise	Wi-Fi	networks,	against	the	older	WPA	and	the	latest
WPA2	standard,	and	even	against	networks	that	only	use	AES.	All	our	attacks	against	WPA2	use	a	novel
technique	called	a	key	reinstallation	attack	(KRACK):

Key	reinstallation	attacks:	high	level	description
In	a	key	reinstallation	attack,	the	adversary	tricks	a	victim	into	reinstalling	an	already-in-use	key.	This	is	achieved	by
manipulating	and	replaying	cryptographic	handshake	messages.	When	the	victim	reinstalls	the	key,
associated	parameters	such	as	the	incremental	transmit	packet	number	(i.e.	nonce)	and	receive	packet	number	(i.e.
replay	counter)	are	reset	to	their	initial	value.	Essentially,	to	guarantee	security,	a	key	should	only	be	installed	and
used	once.	Unfortunately,	we	found	this	is	not	guaranteed	by	the	WPA2	protocol.	By	manipulating	cryptographic
handshakes,	we	can	abuse	this	weakness	in	practice.

Key	reinstallation	attacks:	concrete	example	against	the	4-way	handshake
As	described	in	the	introduction	of	the	research	paper,	the	idea	behind	a	key	reinstallation	attack	can	be	summarized
as	follows.	When	a	client	joins	a	network,	it	executes	the	4-way	handshake	to	negotiate	a	fresh	encryption	key.	It	will
install	this	key	after	receiving	message	3	of	the	4-way	handshake.	Once	the	key	is	installed,	it	will	be	used	to	encrypt
normal	data	frames	using	an	encryption	protocol.	However,	because	messages	may	be	lost	or	dropped,	the	Access
Point	(AP)	will	retransmit	message	3	if	it	did	not	receive	an	appropriate	response	as	acknowledgment.	As	a	result,	the
client	may	receive	message	3	multiple	times.	Each	time	it	receives	this	message,	it	will	reinstall	the	same	encryption
key,	and	thereby	reset	the	incremental	transmit	packet	number	(nonce)	and	receive	replay	counter	used	by	the
encryption	protocol.	We	show	that	an	attacker	can	force	these	nonce	resets	by	collecting	and	replaying
retransmissions	of	message	3	of	the	4-way	handshake.	By	forcing	nonce	reuse	in	this	manner,	the	encryption
protocol	can	be	attacked,	e.g.,	packets	can	be	replayed,	decrypted,	and/or	forged.	The	same	technique	can	also	be
used	to	attack	the	group	key,	PeerKey,	TDLS,	and	fast	BSS	transition	handshake.

Practical	impact
In	our	opinion,	the	most	widespread	and	practically	impactful	attack	is	the	key	reinstallation	attack	against	the	4-way
handshake.	We	base	this	judgement	on	two	observations.	First,	during	our	own	research	we	found	that	most	clients
were	affected	by	it.	Second,	adversaries	can	use	this	attack	to	decrypt	packets	sent	by	clients,	allowing	them	to
intercept	sensitive	information	such	as	passwords	or	cookies.	Decryption	of	packets	is	possible	because	a	key
reinstallation	attack	causes	the	transmit	nonces	(sometimes	also	called	packet	numbers	or	initialization	vectors)	to	be
reset	to	zero.	As	a	result,	the	same	encryption	key	is	used	with	nonce	values	that	have	already	been
used	in	the	past.	In	turn,	this	causes	all	encryption	protocols	of	WPA2	to	reuse	keystream	when	encrypting
packets.	In	case	a	message	that	reuses	keystream	has	known	content,	it	becomes	trivial	to	derive	the	used
keystream.	This	keystream	can	then	be	used	to	decrypt	messages	with	the	same	nonce.	When	there	is	no	known
content,	it	is	harder	to	decrypt	packets,	although	still	possible	in	several	cases	(e.g.	English	text	can	still	be
decrypted).	In	practice,	finding	packets	with	known	content	is	not	a	problem,	so	it	should	be	assumed	that	any	packet
can	be	decrypted.

The	ability	to	decrypt	packets	can	be	used	to	decrypt	TCP	SYN	packets.	This	allows	an	adversary	to	obtain	the	TCP
sequence	numbers	of	a	connection,	and	hijack	TCP	connections.	As	a	result,	even	though	WPA2	is	used,	the
adversary	can	now	perform	one	of	the	most	common	attacks	against	open	Wi-Fi	networks:	injecting	malicious	data
into	unencrypted	HTTP	connections.	For	example,	an	attacker	can	abuse	this	to	inject	ransomware	or	malware	into



websites	that	the	victim	is	visiting.

If	the	victim	uses	either	the	WPA-TKIP	or	GCMP	encryption	protocol,	instead	of	AES-CCMP,	the	impact	is	especially
catastrophic.	Against	these	encryption	protocols,	nonce	reuse	enables	an	adversary	to	not	only
decrypt,	but	also	to	forge	and	inject	packets.	Moreover,	because	GCMP	uses	the	same	authentication	key	in
both	communication	directions,	and	this	key	can	be	recovered	if	nonces	are	reused,	it	is	especially	affected.	Note	that
support	for	GCMP	is	currently	being	rolled	out	under	the	name	Wireless	Gigabit	(WiGig),	and	is	expected	to	be
adopted	at	a	high	rate	over	the	next	few	years.

The	direction	in	which	packets	can	be	decrypted	(and	possibly	forged)	depends	on	the	handshake	being	attacked.
Simplified,	when	attacking	the	4-way	handshake,	we	can	decrypt	(and	forge)	packets	sent	by	the	client.	When
attacking	the	Fast	BSS	Transition	(FT)	handshake,	we	can	decrypt	(and	forge)	packets	sent	towards	the	client.	Finally,
most	of	our	attacks	also	allow	the	replay	of	unicast,	broadcast,	and	multicast	frames.	For	further	details,	see	Section
6	of	our	research	paper.

Note	that	our	attacks	do	not	recover	the	password	of	the	Wi-Fi	network.	They	also	do	not	recover	(any	parts
of)	the	fresh	encryption	key	that	is	negotiated	during	the	4-way	handshake.

Android	and	Linux
Our	attack	is	especially	catastrophic	against	version	2.4	and	above	of	wpa_supplicant,	a	Wi-Fi	client	commonly	used
on	Linux.	Here,	the	client	will	install	an	all-zero	encryption	key	instead	of	reinstalling	the	real	key.	This	vulnerability
appears	to	be	caused	by	a	remark	in	the	Wi-Fi	standard	that	suggests	to	clear	the	encryption	key	from	memory	once
it	has	been	installed	for	the	first	time.	When	the	client	now	receives	a	retransmitted	message	3	of	the	4-way
handshake,	it	will	reinstall	the	now-cleared	encryption	key,	effectively	installing	an	all-zero	key.	Because	Android	uses
wpa_supplicant,	Android	6.0	and	above	also	contains	this	vulnerability.	This	makes	it	trivial	to	intercept	and
manipulate	traffic	sent	by	these	Linux	and	Android	devices.	Note	that	currently	50%	of	Android	devices	are
vulnerable	to	this	exceptionally	devastating	variant	of	our	attack.

Assigned	CVE	identifiers
The	following	Common	Vulnerabilities	and	Exposures	(CVE)	identifiers	were	assigned	to	track	which	products	are
affected	by	specific	instantiations	of	our	key	reinstallation	attack:

CVE-2017-13077:	Reinstallation	of	the	pairwise	encryption	key	(PTK-TK)	in	the	4-way	handshake.
CVE-2017-13078:	Reinstallation	of	the	group	key	(GTK)	in	the	4-way	handshake.
CVE-2017-13079:	Reinstallation	of	the	integrity	group	key	(IGTK)	in	the	4-way	handshake.
CVE-2017-13080:	Reinstallation	of	the	group	key	(GTK)	in	the	group	key	handshake.
CVE-2017-13081:	Reinstallation	of	the	integrity	group	key	(IGTK)	in	the	group	key	handshake.
CVE-2017-13082:	Accepting	a	retransmitted	Fast	BSS	Transition	(FT)	Reassociation	Request	and	reinstalling	the
pairwise	encryption	key	(PTK-TK)	while	processing	it.
CVE-2017-13084:	Reinstallation	of	the	STK	key	in	the	PeerKey	handshake.
CVE-2017-13086:	reinstallation	of	the	Tunneled	Direct-Link	Setup	(TDLS)	PeerKey	(TPK)	key	in	the	TDLS
handshake.
CVE-2017-13087:	reinstallation	of	the	group	key	(GTK)	when	processing	a	Wireless	Network	Management	(WNM)
Sleep	Mode	Response	frame.
CVE-2017-13088:	reinstallation	of	the	integrity	group	key	(IGTK)	when	processing	a	Wireless	Network
Management	(WNM)	Sleep	Mode	Response	frame.

Note	that	each	CVE	identifier	represents	a	specific	instantiation	of	a	key	reinstallation	attack.	This	means	each	CVE	ID
describes	a	specific	protocol	vulnerability,	and	therefore	many	vendors	are	affected	by	each	individual	CVE	ID.
You	can	also	read	vulnerability	note	VU#228519	of	CERT/CC	for	additional	details	on	which	products	are	known	to	be
affected.

P A P E R
Our	research	paper	behind	the	attack	is	titled	Key	Reinstallation	Attacks:	Forcing	Nonce	Reuse	in	WPA2	and	will	be
presented	at	the	Computer	and	Communications	Security	(CCS)	conference	on	Wednesday	1	November	2017.

Although	this	paper	is	made	public	now,	it	was	already	submitted	for	review	on	19	May	2017.	After	this,	only	minor
changes	were	made.	As	a	result,	the	findings	in	the	paper	are	already	several	months	old.	In	the	meantime,	we	have
found	easier	techniques	to	carry	out	our	key	reinstallation	attack	against	the	4-way	handshake.	With	our	novel	attack
technique,	it	is	now	trivial	to	exploit	implementations	that	only	accept	encrypted	retransmissions	of	message	3	of	the
4-way	handshake.	In	particular	this	means	that	attacking	macOS	and	OpenBSD	is	significantly	easier	than
discussed	in	the	paper.



We	would	like	to	highlight	the	following	addendums	and	errata:

Addendum:	wpa_supplicant	v2.6	and	Android	6.0+
Linux's	wpa_supplicant	v2.6	is	also	vulnerable	to	the	installation	of	an	all-zero	encryption	key	in	the	4-way	handshake.
This	was	discovered	by	John	A.	Van	Boxtel.	As	a	result,	all	Android	versions	higher	than	6.0	are	also	affected	by	the
attack,	and	hence	can	be	tricked	into	installing	an	all-zero	encryption	key.	The	new	attack	works	by	injecting	a	forged
message	1,	with	the	same	ANonce	as	used	in	the	original	message	1,	before	forwarding	the	retransmitted	message	3
to	the	victim.

Addendum:	other	vulnerable	handshakes
After	our	initial	research	as	reported	in	the	paper,	we	discovered	that	the	TDLS	handshake	and	WNM	Sleep	Mode
Response	frame	are	also	vulnerable	to	key	reinstallation	attacks.

Selected	errata

In	Figure	9	at	stage	3	of	the	attack,	the	frame	transmitted	from	the	adversary	to	the	authenticator	should	say	a
ReassoReq	instead	of	ReassoResp.

T O O L S
We	have	made	scripts	to	detect	whether	an	implementation	of	the	4-way	handshake,	group	key	handshake,	or	Fast
BSS	Transition	(FT)	handshake	is	vulnerable	to	key	reinstallation	attacks.	These	scripts	will	be	released	once	we	have
had	the	time	to	clean	up	their	usage	instructions.

We	also	made	a	proof-of-concept	script	that	exploits	the	all-zero	key	(re)installation	present	in	certain	Android	and
Linux	devices.	This	script	is	the	one	that	we	used	in	the	demonstration	video.	It	will	be	released	once	everyone	has
had	a	reasonable	chance	to	update	their	devices	(and	we	have	had	a	chance	to	prepare	the	code	repository	for
release).	We	remark	that	the	reliability	of	our	proof-of-concept	script	may	depend	on	how	close	the	victim	is	to	the
real	network.	If	the	victim	is	very	close	to	the	real	network,	the	script	may	fail	because	the	victim	will	always	directly
communicate	with	the	real	network,	even	if	the	victim	is	(forced)	onto	a	different	Wi-Fi	channel	than	this	network.

Q & A
Do	we	now	need	WPA3?
No,	luckily	implementations	can	be	patched	in	a	backwards-compatible	manner.	This	means	a	patched	client
can	still	communicate	with	an	unpatched	access	point	(AP),	and	vice	versa.	In	other	words,	a	patched	client	or	access
point	sends	exactly	the	same	handshake	messages	as	before,	and	at	exactly	the	same	moment	in	time.	However,	the
security	updates	will	assure	a	key	is	only	installed	once,	preventing	our	attack.	So	again,	update	all	your	devices	once
security	updates	are	available.	Finally,	although	an	unpatched	client	can	still	connect	to	a	patched	AP,	and	vice	versa,
both	the	client	and	AP	must	be	patched	to	defend	against	all	attacks!

Should	I	change	my	Wi-Fi	password?
Changing	the	password	of	your	Wi-Fi	network	does	not	prevent	(or	mitigate)	the	attack.	So	you	do	not	have	to
update	the	password	of	your	Wi-Fi	network.	Instead,	you	should	make	sure	all	your	devices	are	updated,	and	you
should	also	update	the	firmware	of	your	router.	Nevertheless,	after	updating	both	your	client	devices	and	your
router,	it's	never	a	bad	idea	to	change	the	Wi-Fi	password.

I'm	using	WPA2	with	only	AES.	That's	also	vulnerable?
Yes,	that	network	configuration	is	also	vulnerable.	The	attack	works	against	both	WPA1	and	WPA2,	against	personal
and	enterprise	networks,	and	against	any	cipher	suite	being	used	(WPA-TKIP,	AES-CCMP,	and	GCMP).	So	everyone
should	update	their	devices	to	prevent	the	attack!

You	use	the	word	"we"	in	this	website.	Who	is	we?
I	use	the	word	"we"	because	that's	what	I'm	used	to	writing	in	papers.	In	practice,	all	the	work	is	done	by	me,	with	me
being	Mathy	Vanhoef.	My	awesome	supervisor	is	added	under	an	honorary	authorship	to	the	research	paper	for	his
excellent	general	guidance.	But	all	the	real	work	was	done	on	my	own.	So	the	author	list	of	academic	papers	does	not
represent	division	of	work	:)



Is	my	device	vulnerable?
Probably.	Any	device	that	uses	Wi-Fi	is	likely	vulnerable.	Contact	your	vendor	for	more	information.

What	if	there	are	no	security	updates	for	my	router?
Our	main	attack	is	against	the	4-way	handshake,	and	does	not	exploit	access	points,	but	instead	targets	clients.	So	it
might	be	that	your	router	does	not	require	security	updates.	We	strongly	advise	you	to	contact	your	vendor	for	more
details.	In	general	though,	you	can	try	to	mitigate	attacks	against	routers	and	access	points	by	disabling	client
functionality	(which	is	for	example	used	in	repeater	modes)	and	disabling	802.11r	(fast	roaming).	For	ordinary	home
users,	your	priority	should	be	updating	clients	such	as	laptops	and	smartphones.

How	did	you	discover	these	vulnerabilities?
When	working	on	the	final	(i.e.	camera-ready)	version	of	another	paper,	I	was	double-checking	some	claims	we	made
regarding	OpenBSD's	implementation	of	the	4-way	handshake.	In	a	sense	I	was	slacking	off,	because	I	was	supposed
to	be	just	finishing	the	paper,	instead	of	staring	at	code.	But	there	I	was,	inspecting	some	code	I	already	read	a
hundred	times,	to	avoid	having	to	work	on	the	next	paragraph.	It	was	at	that	time	that	a	particular	call	to	ic_set_key
caught	my	attention.	This	function	is	called	when	processing	message	3	of	the	4-way	handshake,	and	it	installs	the
pairwise	key	to	the	driver.	While	staring	at	that	line	of	code	I	thought	“Ha.	I	wonder	what	happens	if	that	function	is
called	twice”.	At	the	time	I	(correctly)	guessed	that	calling	it	twice	might	reset	the	nonces	associated	to	the	key.	And
since	message	3	can	be	retransmitted	by	the	Access	Point,	in	practice	it	might	indeed	be	called	twice.	“Better	make	a
note	of	that.	Other	vendors	might	also	call	such	a	function	twice.	But	let's	first	finish	this	paper...”.	A	few	weeks	later,
after	finishing	the	paper	and	completing	some	other	work,	I	investigated	this	new	idea	in	more	detail.	And	the	rest	is
history.

The	4-way	handshake	was	mathematically	proven	as	secure.	How	is	your	attack	possible?
The	brief	answer	is	that	the	formal	proof	does	not	assure	a	key	is	installed	once.	Instead,	it	only	assures	the
negotiated	key	remains	secret,	and	that	handshake	messages	cannot	be	forged.

The	longer	answer	is	mentioned	in	the	introduction	of	our	research	paper:	our	attacks	do	not	violate	the	security
properties	proven	in	formal	analysis	of	the	4-way	handshake.	In	particular,	these	proofs	state	that	the	negotiated
encryption	key	remains	private,	and	that	the	identity	of	both	the	client	and	Access	Point	(AP)	is	confirmed.	Our
attacks	do	not	leak	the	encryption	key.	Additionally,	although	normal	data	frames	can	be	forged	if	TKIP	or	GCMP	is
used,	an	attacker	cannot	forge	handshake	messages	and	hence	cannot	impersonate	the	client	or	AP	during
handshakes.	Therefore,	the	properties	that	were	proven	in	formal	analysis	of	the	4-way	handshake	remain	true.
However,	the	problem	is	that	the	proofs	do	not	model	key	installation.	Put	differently,	the	formal	models	did	not	define
when	a	negotiated	key	should	be	installed.	In	practice,	this	means	the	same	key	can	be	installed	multiple	times,
thereby	resetting	nonces	and	replay	counters	used	by	the	encryption	protocol	(e.g.	by	WPA-TKIP	or	AES-CCMP).

Some	attacks	in	the	paper	seem	hard
We	have	follow-up	work	making	our	attacks	(against	macOS	and	OpenBSD	for	example)	significantly	more	general
and	easier	to	execute.	So	although	we	agree	that	some	of	the	attack	scenarios	in	the	paper	are	rather	impractical,	do
not	let	this	fool	you	into	believing	key	reinstallation	attacks	cannot	be	abused	in	practice.

If	an	attacker	can	do	a	man-in-the-middle	attack,	why	can't	he	just	decrypt	all	the	data?
As	mentioned	in	the	demonstration,	the	attacker	first	obtains	a	man-in-the-middle	(MitM)	position	between	the	victim
and	the	real	Wi-Fi	network	(called	a	channel-based	MitM	position).	However,	this	MitM	position	does	not	enable	the
attacker	to	decrypt	packets!	This	position	only	allows	the	attacker	to	reliably	delay,	block,	or	replay	encrypted	packets.
So	at	this	point	in	the	attack,	he	or	she	cannot	yet	decrypt	packets.	Instead,	the	ability	to	reliably	delay	and	block
packets	is	used	to	execute	a	key	reinstallation	attack.	After	performing	a	key	reinstallation	attack,	packets	can	be
decrypted.

Are	people	exploiting	this	in	the	wild?
We	are	not	in	a	position	to	determine	if	this	vulnerability	has	been	(or	is	being)	actively	exploited	in	the	wild.	That	said,
key	reinstallations	can	actually	occur	spontaneously	without	an	adversary	being	present!	This	may	for	example
happen	if	the	last	message	of	a	handshake	is	lost	due	to	background	noise,	causing	a	retransmission	of	the	previous
message.	When	processing	this	retransmitted	message,	keys	may	be	reinstalled,	resulting	in	nonce	reuse	just	like	in	a
real	attack.

Should	I	temporarily	use	WEP	until	my	devices	are	patched?
NO!	Keep	using	WPA2.

Will	the	Wi-Fi	standard	be	updated	to	address	this?
There	seems	to	be	an	agreement	that	the	Wi-Fi	standard	should	be	updated	to	explicitly	prevent	our	attacks.	These



updates	likely	will	be	backwards-compatible	with	older	implementations	of	WPA2.	Time	will	tell	whether	and	how	the
standard	will	be	updated.

Is	the	Wi-Fi	Alliance	also	addressing	these	vulnerabilities?
For	those	unfamiliar	with	Wi-Fi,	the	Wi-Fi	Alliance	is	an	organization	which	certifies	that	Wi-Fi	devices	conform	to
certain	standards	of	interoperability.	Among	other	things,	this	assures	that	Wi-Fi	products	from	different	vendors
work	well	together.

The	Wi-Fi	Alliance	has	a	plan	to	help	remedy	the	discovered	vulnerabilities	in	WPA2.	Summarized,	they	will:

Require	testing	for	this	vulnerability	within	their	global	certification	lab	network.
Provide	a	vulnerability	detection	tool	for	use	by	any	Wi-Fi	Alliance	member	(this	tool	is	based	on	my	own
detection	tool	that	determines	if	a	device	is	vulnerable	to	some	of	the	discovered	key	reinstallation	attacks).
Broadly	communicate	details	on	this	vulnerability,	including	remedies,	to	device	vendors.	Additionally,	vendors
are	encouraged	to	work	with	their	solution	providers	to	rapidly	integrate	any	necessary	patches.
Communicate	the	importance	for	users	to	ensure	they	have	installed	the	latest	recommended	security	updates
from	device	manufacturers.

Why	did	you	use	match.com	as	an	example	in	the	demonstration	video?
Users	share	a	lot	of	personal	information	on	websites	such	as	match.com.	So	this	example	highlights	all	the	sensitive
information	an	attacker	can	obtain,	and	hopefully	with	this	example	people	also	better	realize	the	potential	(personal)
impact.	We	also	hope	this	example	makes	people	aware	of	all	the	information	these	dating	websites	may	be	collecting.

How	can	these	types	of	bugs	be	prevented?
We	need	more	rigorous	inspections	of	protocol	implementations.	This	requires	help	and	additional	research	from	the
academic	community!	Together	with	other	researchers,	we	hope	to	organize	workshop(s)	to	improve	and	verify	the
correctness	of	security	protocol	implementations.

Why	the	domain	name	krackattacks.com?
First,	I'm	aware	that	KRACK	attacks	is	a	pleonasm,	since	KRACK	stands	for	key	reinstallation	attack	and	hence	already
contains	the	word	attack.	But	the	domain	name	rhymes,	so	that's	why	it's	used.

Did	you	get	bug	bounties	for	this?
I	haven't	applied	for	any	bug	bounties	yet,	nor	have	I	received	one	already.

How	does	this	attack	compare	to	other	attacks	against	WPA2?
This	is	the	first	attack	against	the	WPA2	protocol	that	doesn't	rely	on	password	guessing.	Indeed,	other	attacks
against	WPA2-enabled	network	are	against	surrounding	technologies	such	as	Wi-Fi	Protected	Setup	(WPS),	or	are
attacks	against	older	standards	such	as	WPA-TKIP.	Put	differently,	none	of	the	existing	attacks	were	against	the	4-
way	handshake	or	against	cipher	suites	defined	in	the	WPA2	protocol.	In	contrast,	our	key	reinstallation	attack	against
the	4-way	handshake	(and	against	other	handshakes)	highlights	vulnerabilities	in	the	WPA2	protocol	itself.

Are	other	protocols	also	affected	by	key	reinstallation	attacks?
We	expect	that	certain	implementations	of	other	protocols	may	be	vulnerable	to	similar	attacks.	So	it's	a	good	idea	to
audit	security	protocol	implementations	with	this	attack	in	mind.	However,	we	consider	it	unlikely	that	other	protocol
standards	are	affected	by	similar	attacks	(or	at	least	so	we	hope).	Nevertheless,	it's	still	a	good	idea	to	audit	other
protocols!

Is	there	a	higher	resolution	version	of	the	logo?
Yes	there	is.	And	a	big	thank	you	goes	to	the	person	that	made	the	logo!

When	did	you	first	notify	vendors	about	the	vulnerability?
We	sent	out	notifications	to	vendors	whose	products	we	tested	ourselves	around	14	July	2017.	After	communicating
with	these	vendors,	we	realized	how	widespread	the	weaknesses	we	discovered	are	(only	then	did	I	truly	convince
myself	it	was	indeed	a	protocol	weaknesses	and	not	a	set	of	implementation	bugs).	At	that	point,	we	decided	to	let
CERT/CC	help	with	the	disclosure	of	the	vulnerabilities.	In	turn,	CERT/CC	sent	out	a	broad	notification	to	vendors	on	28
August	2017.



CREATIVE	COMMONS	ATTRIBUTION	4.0	INTERNATIONAL	LICENSE	| 	D ES IGN 	 IN S P IRED 	B Y	TEMP LA TED .

Why	did	OpenBSD	silently	release	a	patch	before	the	embargo?
OpenBSD	was	notified	of	the	vulnerability	on	15	July	2017,	before	CERT/CC	was	involved	in	the	coordination.	Quite
quickly,	Theo	de	Raadt	replied	and	critiqued	the	tentative	disclosure	deadline:	“In	the	open	source	world,	if	a	person
writes	a	diff	and	has	to	sit	on	it	for	a	month,	that	is	very	discouraging”.	Note	that	I	wrote	and	included	a	suggested
diff	for	OpenBSD	already,	and	that	at	the	time	the	tentative	disclosure	deadline	was	around	the	end	of	August.	As	a
compromise,	I	allowed	them	to	silently	patch	the	vulnerability.	In	hindsight	this	was	a	bad	decision,	since	others	might
rediscover	the	vulnerability	by	inspecting	their	silent	patch.	To	avoid	this	problem	in	the	future,	OpenBSD	will	now
receive	vulnerability	notifications	closer	to	the	end	of	an	embargo.

So	you	expect	to	find	other	Wi-Fi	vulnerabilities?
“I	think	we're	just	getting	started.”		—	Master	Chief,	Halo	1


