Software disenchantment

Translations: French Italian Portuguese Russian Spanish

I've been programming for 15 years now. Recently our industry’s lack
of care for efficiency, simplicity, and excellence started really getting
to me, to the point of me getting depressed by my own career and the

IT in general.

Modern cars work, let’s say for the sake of argument, at 98% of
what's physically possible with the current engine design. Modern
buildings use just enough material to fulfill their function and stay
safe under the given conditions. All planes converged to the optimal

size/form/load and basically look the same.

Only in software, it's fine if a program runs at 1% or even 0.01% of the
possible performance. Everybody just seems to be ok with it. People
are often even proud about how much inefficient it is, as in “why

should we worry, computers are fast enough”:

@tveastman: | have a Python program | run every day, it takes 1.5
seconds. | spent six hours re-writing it in rust, now it takes 0.06
seconds. That efficiency improvement means I'll make my time back

in 41years, 24 days :-)

You've probably heard this mantra: “programmer time is more
expensive than computer time”. What it means basically is that we're
wasting computers at an unprecedented scale. Would you buy a car if
it eats 100 liters per 100 kilometers? How about 1000 liters? With

computers, we do that all the time.

https://blog.romainfallet.fr/desenchantement-logiciel/
http://tonsky.me/blog/disenchantment/it/
http://tonsky.me/blog/disenchantment/pt/
https://habr.com/post/423889/
http://tonsky.me/blog/disenchantment/es/
https://twitter.com/tveastman/status/1039002300600147968
https://xkcd.com/2021/

Everything is unbearably slow

Look around: our portable computers are thousands of times more
powerful than the ones that brought man to the moon. Yet every
other webpage struggles to maintain a smooth 60fps scroll on the
latest top-of-the-line MacBook Pro. | can comfortably play games,

watch 4K videos but not scroll web pages? How is it ok?

Google Inbox, a web app written by Google, running in Chrome
browser also by Google, takes 13 seconds to open moderately-sized

emails:

It also animates empty white boxes instead of showing their content
because it's the only way anything can be animated on a webpage
with decent performance. No, decent doesn’t mean 60fps, it's rather
“as fast as this web page could possibly go”. I'm dying to see web
community answer when 120Hz displays become mainstream. Shit

barely hits 60Hz already.

Windows 10 takes 30 minutes to update. What could it possibly be
doing for that long? That much time is enough to fully format my SSD

drive, download a fresh build and install it like 5 times in a row.

https://twitter.com/nikitonsky/statuses/968882438024941568
https://grumpy.website/post/0PeXr1S7N

Pavel Fatin: Typing in editor is a relatively simple process, so even

286 PCs were able to provide a rather fluid typing experience.

Modern text editors have higher latency than 42-year-old Emacs. Text
editors! What can be simpler? On each keystroke, all you have to do is
update tiny rectangular region and modern text editors can’t do that
in 16ms. It's a lot of time. A LOT. A 3D game can fill the whole screen
with hundreds of thousands (') of polygons in the same 16ms and
also process input, recalculate the world and dynamically

load/unload resources. How come?

As a general trend, we're not getting faster software with more
features. We're getting faster hardware that runs slower software with
the same features. Everything works way below the possible speed.
Ever wonder why your phone needs 30 to 60 seconds to boot? Why
can't it boot, say, in one second? There are no physical limitations to
that. | would love to see that. | would love to see limits reached and
explored, utilizing every last bit of performance we can get for

something meaningful in a meaningful way.

Everything is HUUUUGE

And then there's bloat. Web apps could open up to 10x faster if you
just simply block all ads. Google begs everyone to stop shooting
themselves in their feet with AMP initiative—a technology solution to
a problem that doesn’t need any technology, just a little bit of
common sense. If you remove bloat, the web becomes crazy fast. How

smart do you have to be to understand that?

Android system with no apps takes almost 6 Gb. Just think for a
second how obscenely HUGE that number is. What's in there, HD
movies? | guess it’s basically code: kernel, drivers. Some string and

resources too, sure, but those can't be big. So, how many drivers do

https://pavelfatin.com/typing-with-pleasure/
https://grumpy.website/post/0Oz1lDOq5

you need for a phone?

Windows 95 was 30Mb. Today we have web pages heavier than that!
Windows 10 is 4Gb, which is 133 times as big. But is it 133 times as
superior? | mean, functionally they are basically the same. Yes, we
have Cortana, but | doubt it takes 3970 Mb. But whatever Windows 10
is, is Android really 150% of that?

Google keyboard app routinely eats 150 Mb. Is an app that draws 30
keys on a screen really five times more complex than the whole
Windows 95? Google app, which is basically just a package for Google
Web Search, is 350 Mb! Google Play Services, which | do not use (|
don’t buy books, music or videos there)—300 Mb that just sit there

and which I'm unable to delete.

All that leaves me around 1 Gb for my photos after I install all the
essential (social, chats, maps, taxi, banks etc) apps. And that’s with no
games and no music at all! Remember times when an 0S, apps and

all your data fit on a floppy?

Your desktop todo app is probably written in Electron and thus has
userland driver for Xbox 360 controller in it, can render 3d graphics

and play audio and take photos with your web camera.

A simple text chat is notorious for its load speed and memory
consumption. Yes, you really have to count Slack in as a resource-
heavy application. | mean, chatroom and barebones text editor, those
are supposed to be two of the less demanding apps in the whole
world. Welcome to 2018.

At least it works, you might say. Well, bigger doesn’t imply better.
Bigger means someone has lost control. Bigger means we don't know
what's going on. Bigger means complexity tax, performance tax,
reliability tax. This is not the norm and should not become the norm.
Overweight apps should mean a red flag. They should mean run away

scared.

Everything rots

16Gb Android phone was perfectly fine 3 years ago. Today with
Android 81 it's barely usable because each app has become at least
twice as big for no apparent reason. There are no additional functions.
They are not faster or more optimized. They don't look different. They

just...grow?

iPhone 4s was released with i0S 5, but can barely run i0OS 9. And it's
not because i0S 9 is that much superior—it's basically the same. But
their new hardware is faster, so they made software slower. Don't

worry—you got exciting new capabilities like...running the same apps

https://josephg.com/blog/electron-is-flash-for-the-desktop/

with the same speed! | dunno.

iOS 11 dropped support for 32-bit apps. That means if the developer
isn't around at the time of i0S 11 release or isn’t willing to go back
and update a once-perfectly-fine app, chances are you won’t be

seeing their app ever again.

@jckarter: A DOS program can be made to run unmodified on pretty
much any computer made since the 80s. A JavaScript app might

break with tomorrow’s Chrome update

Web pages working today would not be compatible with any browser

in 10 years time (probably sooner).

“It takes all the running you can do, to keep in the same place”. But
what's the point? | might enjoy occasionally buying a new phone and
new MacBook as much as the next guy, but to do so just to be able to

run all the same apps which just became slower?

| think we can and should do better than that. Everyone is busy
building stuff for right now, today, rarely for tomorrow. But it would

be nice to also have stuff that lasts a little longer than that.

Worse Is better

Nobody understands anything at this point. Neither they want to. We
just throw barely baked shit out there, hope for the best and call it

“startup wisdom”.

Web pages ask you to refresh if anything goes wrong. Who has time to

figure out what happened?

Any web app produces a constant stream of “random” JS errors in the

wild, even on compatible browsers.

The whole webpage/SQL database architecture is built on a premise
(hope, even) that nobody will touch your data while you look at the

rendered webpage.

Most collaborative implementations are “best effort” and have many
common-life scenarios in which they lose data. Ever seen this
dialogue “which version to keep?” | mean, bar today is so low that

your users would be happy to at least have a window like that.

https://twitter.com/jckarter/statuses/1017071794245623808
http://tonsky.me/blog/chrome-intervention/

And no, in my world app that says “I'm gonna destroy some of your
work, but you get to choose which one” is not okay.

Linux kills random processes by design. And yet it's the most popular
server-side OS.

Every device | own fails regularly one way or another. My Dell monitor
needs a hard reboot from time to time because there’s software in it.
Airdrop? You're lucky if it'll detect your device, otherwise, what do |
do? Bluetooth? Spec is so complex that devices won't talk to each

other and periodic resets are the best way to go.

And I'm not even touching Internet of Things. It's so far beyond the

laughing point I'm not even sure what to add.

| want to take pride in my work. | want to deliver working, stable

things. To do that, we need to understand what we are building, in

https://thewirecutter.com/blog/understanding-bluetooth-pairing-problems/
http://time.com/4358533/bluetooth-fix-how/
https://twitter.com/internetofshit

and out, and that’s impossible to do in bloated, over-engineered

systems.

Programming is the same mess

It just seems that nobody is interested in building quality, fast,
efficient, lasting, foundational stuff anymore. Even when efficient
solutions have been known for ages, we still struggle with the same
problems: package management, build systems, compilers, language
design, IDEs.

Build systems are inherently unreliable and periodically require full
clean, even though all info for invalidation is there. Nothing stops us
from making build process reliable, predictable and 100%
reproducible. Just nobody thinks its important. NPM has stayed in

“sometimes works” state for years.

@przemyslawdabek: It seems to me that rm -rf node_modules is
indispensable part of workflow when developing Node.js/JavaScript

projects.

And build times? Nobody thinks compiler that works minutes or even
hours is a problem. What happened to “programmer’s time is more
important”? Almost all compilers, pre- and post-processors add
significant, sometimes disastrous time tax to your build without

providing proportionally substantial benefits.

You would expect programmers to make mostly rational decisions, yet
sometimes they do the exact opposite of that. E.g. choosing Hadoop
even when it's slower than running the same task on a single
desktop.

Machine learning and “Al” moved software to guessing in the times

when most computers are not even reliable enough in the first place.

@rakhim: When an app or a service is described as “Al-powered” or

https://twitter.com/przemyslawdabek/status/940547268729606145
https://xkcd.com/303/
https://www.chrisstucchio.com/blog/2013/hadoop_hatred.html
https://twitter.com/freetonik/status/1039826129190875136

“ML-based”, I read it as “unreliable, unpredictable, and impossible to
reason about behavior”. | try to avoid “Al” because | want computers

to be the opposite: reliable, predictable, reasonable.

We put virtual machines inside Linux, and then we put Docker inside
virtual machines, simply because nobody was able to clean up the

mess that most programs, languages and their environment produce.
We cover shit with blankets just not to deal with it. “Single binary” is

still a HUGE selling point for Go, for example. No mess == success.

And dependencies? People easily add overengineered “full package
solutions” to solve the simplest problems without considering their
costs. And those dependencies bring other dependencies. You end up
with a tree that is something in between of horror story (OMG so big
and full of conflicts) and comedy (there’s no reason we include these,

yet here they are):

https://xkcd.com/1987/
https://medium.com/@jdan/i-peeked-into-my-node-modules-directory-and-you-wont-believe-what-happened-next-b89f63d21558

Programs can't work for years without reboots anymore. Sometimes
even days are too much to ask. Random stuff happens and nobody

knows why.

What's worse, nobody has time to stop and figure out what happened.
Why bother if you can always buy your way out of it. Spin another
AWS instance. Restart process. Drop and restore the whole database.
Write a watchdog that will restart your broken app every 20 minutes.
Include same resources multiple times, zip and ship. Move fast, don't
fix.

That is not engineering. That's just lazy programming. Engineering is
understanding performance, structure, limits of what you build,
deeply. Combining poorly written stuff with more poorly written stuff
goes strictly against that. To progress, we need to understand what

and why are we doing.

We're stuck with it

So everything is just a pile of barely working code added on top of
previously written barely working code. It keeps growing in size and

complexity, diminishing any chance for a change.

To have a healthy ecosystem you need to go back and revisit. You

need to occasionally throw stuff away and replace it with better stuff.

https://docs.gitlab.com/ee/administration/operations/unicorn.html#unicorn-worker-killer
https://blog.timac.org/2017/0410-analysis-of-the-facebook-app-for-ios-v-87-0/

But who has time for that? We haven’t seen new OS kernels in what,
25 years? It's just too complex to simply rewrite by now. Browsers are
so full of edge cases and historical precedents by now that nobody

dares to write layout engine from scratch.
Today’s definition of progress is either throw more fuel into the fire:

@sahrizv: 2014 - We must adopt #microservices to solve all problems
with monoliths.
2016 - We must adopt #tdocker to solve all problems with

microservices.
2018 - We must adopt #tkubernetes to solve all problems with docker

or reinventing the wheel:

@dr_c0d3: 2000: Write 100s of lines of XML to “declaratively”
configure your servlets and EJBs.

2018: Write 100s of lines of YAML to “declaratively” configure your
microservices.

At least XML had schemas...

We're stuck with what we have, and nobody will ever save us.

Business won't care

Neither will users. They are only learned to expect what we can

https://twitter.com/sahrizv/status/1018184792611827712
https://twitter.com/dr_c0d3/status/1040092903052378112

provide. We (engineers) say every Android app takes 350 Mb? Ok,
they'll live with that. We say we can’t give them smooth scrolling? Ok,
they'll live with a phone that stutter. We say “if it doesn’t work,

reboot”? They'll reboot. After all, they have no choice.

There's no competition either. Everybody is building the same slow,
bloated, unreliable products. Occasional jump forward in quality does
bring competitive advantage (iPhone/iOS vs other smartphones,
Chrome vs other browsers) and forces everybody to regroup, but not

for long.

So it's our mission as engineers to show the world what's possible
with today’s computers in terms of performance, reliability, quality,
usability. If we care, people will learn. And there’s nobody but us to

show them that it's very much possible. If only we care.

It's not all bad

There are some bright spots indicating that improving over state-of-

the-art is not impossible.

Work Martin Thompson has being doing (LMAX Disruptor, SBE, Aeron)

is impressive, refreshingly simple and efficient.

Xi editor by Raph Levien seems to be built with the right principles in

mind.

Jonathan Blow has a language he alone develops for his game that
can compile 500k lines per second on his laptop. That's cold compile,

no intermediate caching, no incremental builds.

You don't have to be a genius to write fast programs. There’s no
magic trick. The only thing required is not building on top of a huge

pile of crap that modern toolchain is.

Better world manifesto

| want to see progress. | want change. | want state-of-the-art in
software engineering to improve, not just stand still. | don’t want to
reinvent the same stuff over and over, less performant and more
bloated each time. | want something to believe in, a worthy end goal,
a future better than what we have today, and | want a community of

engineers who share that vision.

What we have today is not progress. We barely meet business goals
with poor tools applied over the top. We're stuck in local optima and
nobody wants to move out. It's not even a good place, it's bloated

and inefficient. We just somehow got used to it.

So | want to call it out: where we are today is bullshit. As engineers,

https://twitter.com/mjpt777
https://github.com/LMAX-Exchange/disruptor
https://github.com/real-logic/simple-binary-encoding
https://github.com/real-logic/aeron
https://github.com/google/xi-editor
https://www.youtube.com/user/jblow888

we can, and should, and will do better. We can have better tools, we
can build better apps, faster, more predictable, more reliable, using
fewer resources (orders of magnitude fewer!). We need to understand
deeply what are we doing and why. We need to deliver: reliably,
predictably, with topmost quality. We can—and should-take pride in

our work. Not just “given what we had...”—no buts!

I hope I'm not alone at this. | hope there are people out there who
want to do the same. I'd appreciate if we at least start talking about
how absurdly bad our current situation in the software industry is.

And then we maybe figure out how to get out.

Hi!

R\
I'm Nikita. Here | write about programming and Ul design Subscribe
I also create open-source stuff: Fira Code, AnyBar, DataScript and Rum. If you
like what | do and want to get early access to my articles (along with other
benefits), you should support me on Patreon.

https://news.ycombinator.com/item?id=18012334
https://www.reddit.com/r/programming/comments/9go8ul/software_disenchantment/
https://patreon.com/tonsky
http://tonsky.me/blog/how-to-subscribe/

