
October	2,	2017
This	article	was	contributed
by	Antoine	Beaupré

Subscribe	/	Log	in	/	New	account

Strategies	for	offline	PGP	key	storage
[LWN	subscriber-only	content]

Welcome	to	LWN.net
The	following	subscription-only	content	has	been	made	available	to
you	by	an	LWN	subscriber.	Thousands	of	subscribers	depend	on
LWN	for	the	best	news	from	the	Linux	and	free	software
communities.	If	you	enjoy	this	article,	please	consider	accepting	the
trial	offer	on	the	right.	Thank	you	for	visiting	LWN.net!

Free	trial	subscription
Try	LWN	for	free	for	1	month:
no	payment	or	credit	card
required.	Activate	your	trial
subscription	now	and	see	why
thousands	of	readers	subscribe
to	LWN.net.

While	the	adoption	of	OpenPGP	by	the	general	population	is	marginal	at	best,	it	is	a
critical	component	for	the	security	community	and	particularly	for	Linux	distributions.
For	example,	every	package	uploaded	into	Debian	is	verified	by	the	central	repository
using	the	maintainer's	OpenPGP	keys	and	the	repository	itself	is,	in	turn,	signed	using
a	separate	key.	If	upstream	packages	also	use	such	signatures,	this	creates	a
complete	trust	path	from	the	original	upstream	developer	to	users.	Beyond	that,	pull	requests	for	the	Linux	kernel
are	verified	using	signatures	as	well.	Therefore,	the	stakes	are	high:	a	compromise	of	the	release	key,	or	even	of	a
single	maintainer's	key,	could	enable	devastating	attacks	against	many	machines.

That	has	led	the	Debian	community	to	develop	a	good	grasp	of	best	practices	for	cryptographic	signatures	(which
are	typically	handled	using	GNU	Privacy	Guard,	also	known	as	GnuPG	or	GPG).	For	example,	weak	(less	than	2048
bits)	and	vulnerable	PGPv3	keys	were	removed	from	the	keyring	in	2015,	and	there	is	a	strong	culture	of	cross-
signing	keys	between	Debian	members	at	in-person	meetings.	Yet	even	Debian	developers	(DDs)	do	not	seem	to
have	established	practices	on	how	to	actually	store	critical	private	key	material,	as	we	can	see	in	this	discussion	on
the	debian-project	mailing	list.	That	email	boiled	down	to	a	simple	request:	can	I	have	a	"key	dongles	for	dummies"
tutorial?	Key	dongles,	or	keycards	as	we'll	call	them	here,	are	small	devices	that	allow	users	to	store	keys	on	an
offline	device	and	provide	one	possible	solution	for	protecting	private	key	material.	In	this	article,	I	hope	to	use	my
experience	in	this	domain	to	clarify	the	issue	of	how	to	store	those	precious	private	keys	that,	if	compromised,	could
enable	arbitrary	code	execution	on	millions	of	machines	all	over	the	world.

Why	store	keys	offline?

Before	we	go	into	details	about	storing	keys	offline,	it	may	be	useful	to	do	a	small	reminder	of	how	the	OpenPGP
standard	works.	OpenPGP	keys	are	made	of	a	main	public/private	key	pair,	the	certification	key,	used	to	sign	user
identifiers	and	subkeys.	My	public	key,	shown	below,	has	the	usual	main	certification/signature	key	(marked	SC)	but
also	an	encryption	subkey	(marked	E),	a	separate	signature	key	(S),	and	two	authentication	keys	(marked	A)	which	I
use	as	RSA	keys	to	log	into	servers	using	SSH,	thanks	to	the	Monkeysphere	project.

				pub			rsa4096/792152527B75921E	2009-05-29	[SC]	[expires:	2018-04-19]
	 		8DC901CE64146C048AD50FBB792152527B75921E
				uid																	[ultimate]	Antoine	Beaupré	<anarcat@anarc.at>
				uid																	[ultimate]	Antoine	Beaupré	<anarcat@koumbit.org>
				uid																	[ultimate]	Antoine	Beaupré	<anarcat@orangeseeds.org>
				uid																	[ultimate]	Antoine	Beaupré	<anarcat@debian.org>
				sub			rsa2048/B7F648FED2DF2587	2012-07-18	[A]
				sub			rsa2048/604E4B3EEE02855A	2012-07-20	[A]
				sub			rsa4096/A51D5B109C5A5581	2009-05-29	[E]
				sub			rsa2048/3EA1DDDDB261D97B	2017-08-23	[S]

All	the	subkeys	(sub)	and	identities	(uid)	are	bound	by	the	main	certification	key	using	cryptographic	self-signatures.
So	while	an	attacker	stealing	a	private	subkey	can	spoof	signatures	in	my	name	or	authenticate	to	other	servers,
that	key	can	always	be	revoked	by	the	main	certification	key.	But	if	the	certification	key	gets	stolen,	all	bets	are	off:
the	attacker	can	create	or	revoke	identities	or	subkeys	as	they	wish.	In	a	catastrophic	scenario,	an	attacker	could
even	steal	the	key	and	remove	your	copies,	taking	complete	control	of	the	key,	without	any	possibility	of	recovery.
Incidentally,	this	is	why	it	is	so	important	to	generate	a	revocation	certificate	and	store	it	offline.

So	by	moving	the	certification	key	offline,	we	reduce	the	attack	surface	on	the	OpenPGP	trust	chain:	day-to-day	keys
(e.g.	email	encryption	or	signature)	can	stay	online	but	if	they	get	stolen,	the	certification	key	can	revoke	those	keys
without	having	to	revoke	the	main	certification	key	as	well.	Note	that	a	stolen	encryption	key	is	a	different	problem:
even	if	we	revoke	the	encryption	subkey,	this	will	only	affect	future	encrypted	messages.	Previous	messages	will	be
readable	by	the	attacker	with	the	stolen	subkey	even	if	that	subkey	gets	revoked,	so	the	benefits	of	revoking
encryption	certificates	are	more	limited.

Common	strategies	for	offline	key	storage

Considering	the	security	tradeoffs,	some	propose	storing	those	critical	keys	offline	to	reduce	those	threats.	But

Content	▶ Edition	▶

where	exactly?	In	an	attempt	to	answer	that	question,	Jonathan	McDowell,	a	member	of	the	Debian	keyring
maintenance	team,	said	that	there	are	three	options:	use	an	external	LUKS-encrypted	volume,	an	air-gapped	system,
or	a	keycard.

Full-disk	encryption	like	LUKS	adds	an	extra	layer	of	security	by	hiding	the	content	of	the	key	from	an	attacker.	Even
though	private	keyrings	are	usually	protected	by	a	passphrase,	they	are	easily	identifiable	as	a	keyring.	But	when	a
volume	is	fully	encrypted,	it's	not	immediately	obvious	to	an	attacker	there	is	private	key	material	on	the	device.
According	to	Sean	Whitton,	another	advantage	of	LUKS	over	plain	GnuPG	keyring	encryption	is	that	you	can	pass	the
--iter-time	argument	when	creating	a	LUKS	partition	to	increase	key-derivation	delay,	which	makes	brute-forcing
much	harder.	Indeed,	GnuPG	2.x	doesn't	have	a	run-time	option	to	configure	the	key-derivation	algorithm,	although	a
patch	was	introduced	recently	to	make	the	delay	configurable	at	compile	time	in	gpg-agent,	which	is	now	responsible
for	all	secret	key	operations.

The	downside	of	external	volumes	is	complexity:	GnuPG	makes	it	difficult	to	extract	secrets	out	of	its	keyring,	which
makes	the	first	setup	tricky	and	error-prone.	This	is	easier	in	the	2.x	series	thanks	to	the	new	storage	system	and
the	associated	keygrip	files,	but	it	still	requires	arcane	knowledge	of	GPG	internals.	It	is	also	inconvenient	to	use
secret	keys	stored	outside	your	main	keyring	when	you	actually	do	need	to	use	them,	as	GPG	doesn't	know	where	to
find	those	keys	anymore.

Another	option	is	to	set	up	a	separate	air-gapped	system	to	perform	certification	operations.	An	example	is	the	PGP
clean	room	project,	which	is	a	live	system	based	on	Debian	and	designed	by	DD	Daniel	Pocock	to	operate	an
OpenPGP	and	X.509	certificate	authority	using	commodity	hardware.	The	basic	principle	is	to	store	the	secrets	on	a
different	machine	that	is	never	connected	to	the	network	and,	therefore,	not	exposed	to	attacks,	at	least	in	theory.	I
have	personally	discarded	that	approach	because	I	feel	air-gapped	systems	provide	a	false	sense	of	security:	data
eventually	does	need	to	come	in	and	out	of	the	system,	somehow,	even	if	only	to	propagate	signatures	out	of	the
system,	which	exposes	the	system	to	attacks.

System	updates	are	similarly	problematic:	to	keep	the	system	secure,	timely	security	updates	need	to	be	deployed	to
the	air-gapped	system.	A	common	use	pattern	is	to	share	data	through	USB	keys,	which	introduce	a	vulnerability
where	attacks	like	BadUSB	can	infect	the	air-gapped	system.	From	there,	there	is	a	multitude	of	exotic	ways	of
exfiltrating	the	data	using	LEDs,	infrared	cameras,	or	the	good	old	TEMPEST	attack.	I	therefore	concluded	the
complexity	tradeoffs	of	an	air-gapped	system	are	not	worth	it.	Furthermore,	the	workflow	for	air-gapped	systems	is
complex:	even	though	PGP	clean	room	went	a	long	way,	it's	still	lacking	even	simple	scripts	that	allow	signing	or
transferring	keys,	which	is	a	problem	shared	by	the	external	LUKS	storage	approach.

Keycards	advantages

The	approach	I	have	chosen	is	to	use	a	cryptographic	keycard:	an	external	device,	usually	connected	through	the
USB	port,	that	stores	the	private	key	material	and	performs	critical	cryptographic	operations	on	the	behalf	of	the
host.	For	example,	the	FST-01	keycard	can	perform	RSA	and	ECC	public-key	decryption	without	ever	exposing	the
private	key	material	to	the	host.	In	effect,	a	keycard	is	a	miniature	computer	that	performs	restricted	computations
for	another	host.	Keycards	usually	support	multiple	"slots"	to	store	subkeys.	The	OpenPGP	standard	specifies	there
are	three	subkeys	available	by	default:	for	signature,	authentication,	and	encryption.	Finally,	keycards	can	have	an
actual	physical	keypad	to	enter	passwords	so	a	potential	keylogger	cannot	capture	them,	although	the	keycards	I
have	access	to	do	not	feature	such	a	keypad.

We	could	easily	draw	a	parallel	between	keycards	and	an	air-gapped	system;	in	effect,	a	keycard	is	a	miniaturized	air-
gapped	computer	and	suffers	from	similar	problems.	An	attacker	can	intercept	data	on	the	host	system	and	attack
the	device	in	the	same	way,	if	not	more	easily,	because	a	keycard	is	actually	"online"	(i.e.	clearly	not	air-gapped)	when
connected.	The	advantage	over	a	fully-fledged	air-gapped	computer,	however,	is	that	the	keycard	implements	only	a
restricted	set	of	operations.	So	it	is	easier	to	create	an	open	hardware	and	software	design	that	is	audited	and
verified,	which	is	much	harder	to	accomplish	for	a	general-purpose	computer.

Like	air-gapped	systems,	keycards	address	the	scenario	where	an	attacker	wants	to	get	the	private	key	material.
While	an	attacker	could	fool	the	keycard	into	signing	or	decrypting	some	data,	this	is	possible	only	while	the	key	is
physically	connected,	and	the	keycard	software	will	prompt	the	user	for	a	password	before	doing	the	operation,
though	the	keycard	can	cache	the	password	for	some	time.	In	effect,	it	thwarts	offline	attacks:	to	brute-force	the
key's	password,	the	attacker	needs	to	be	on	the	target	system	and	try	to	guess	the	keycard's	password,	which	will
lock	itself	after	a	limited	number	of	tries.	It	also	provides	for	a	clean	and	standard	interface	to	store	keys	offline:	a
single	GnuPG	command	moves	private	key	material	to	a	keycard	(the	keytocard	command	in	the	--edit-key	interface),
whereas	moving	private	key	material	to	a	LUKS-encrypted	device	or	air-gapped	computer	is	more	complex.

Keycards	are	also	useful	if	you	operate	on	multiple	computers.	A	common	problem	when	using	GnuPG	on	multiple
machines	is	how	to	safely	copy	and	synchronize	private	key	material	among	different	devices,	which	introduces	new
security	problems.	Indeed,	a	"good	rule	of	thumb	in	a	forensics	lab",	according	to	Robert	J.	Hansen	on	the	GnuPG
mailing	list,	is	to	"store	the	minimum	personal	data	possible	on	your	systems".	Keycards	provide	the	best	of	both
worlds	here:	you	can	use	your	private	key	on	multiple	computers	without	actually	storing	it	in	multiple	places.	In
fact,	Mike	Gerwitz	went	as	far	as	saying:

For	users	that	need	their	GPG	key	on	multiple	boxes,	I	consider	a	smartcard	to	be	essential.	Otherwise,	the
user	is	just	furthering	her	risk	of	compromise.

Keycard	tradeoffs

As	Gerwitz	hinted,	there	are	multiple	downsides	to	using	a	keycard,	however.	Another	DD,	Wouter	Verhelst	clearly
expressed	the	tradeoffs:

Smartcards	are	useful.	They	ensure	that	the	private	half	of	your	key	is	never	on	any	hard	disk	or	other
general	storage	device,	and	therefore	that	it	cannot	possibly	be	stolen	(because	there's	only	one	possible
copy	of	it).

Smartcards	are	a	pain	in	the	ass.	They	ensure	that	the	private	half	of	your	key	is	never	on	any	hard	disk	or
other	general	storage	device	but	instead	sits	in	your	wallet,	so	whenever	you	need	to	access	it,	you	need	to
grab	your	wallet	to	be	able	to	do	so,	which	takes	more	effort	than	just	firing	up	GnuPG.	If	your	laptop
doesn't	have	a	builtin	cardreader,	you	also	need	to	fish	the	reader	from	your	backpack	or	wherever,	etc.

"Smartcards"	here	refer	to	older	OpenPGP	cards	that	relied	on	the	IEC	7816	smartcard	connectors	and	therefore
needed	a	specially-built	smartcard	reader.	Newer	keycards	simply	use	a	standard	USB	connector.	In	any	case,	it's
true	that	having	an	external	device	introduces	new	issues:	attackers	can	steal	your	keycard,	you	can	simply	lose	it,
or	wash	it	with	your	dirty	laundry.	A	laptop	or	a	computer	can	also	be	lost,	of	course,	but	it	is	much	easier	to	lose	a
small	USB	keycard	than	a	full	laptop	—	and	I	have	yet	to	hear	of	someone	shoving	a	full	laptop	into	a	washing
machine.	When	you	lose	your	keycard,	unless	a	separate	revocation	certificate	is	available	somewhere,	you	lose
complete	control	of	the	key,	which	is	catastrophic.	But,	even	if	you	revoke	the	lost	key,	you	need	to	create	a	new	one,
which	involves	rebuilding	the	web	of	trust	for	the	key	—	a	rather	expensive	operation	as	it	usually	requires	meeting
other	OpenPGP	users	in	person	to	exchange	fingerprints.

You	should	therefore	think	about	how	to	back	up	the	certification	key,	which	is	a	problem	that	already	exists	for
online	keys;	of	course,	everyone	has	a	revocation	certificates	and	backups	of	their	OpenPGP	keys...	right?	In	the
keycard	scenario,	backups	may	be	multiple	keycards	distributed	geographically.

Note	that,	contrary	to	an	air-gapped	system,	a	key	generated	on	a	keycard	cannot	be	backed	up,	by	design.	For
subkeys,	this	is	not	a	problem	as	they	do	not	need	to	be	backed	up	(except	encryption	keys).	But,	for	a	certification
key,	this	means	users	need	to	generate	the	key	on	the	host	and	transfer	it	to	the	keycard,	which	means	the	host	is
expected	to	have	enough	entropy	to	generate	cryptographic-strength	random	numbers,	for	example.	Also	consider
the	possibility	of	combining	different	approaches:	you	could,	for	example,	use	a	keycard	for	day-to-day	operation,	but
keep	a	backup	of	the	certification	key	on	a	LUKS-encrypted	offline	volume.

Keycards	introduce	a	new	element	into	the	trust	chain:	you	need	to	trust	the	keycard	manufacturer	to	not	have	any
hostile	code	in	the	key's	firmware	or	hardware.	In	addition,	you	need	to	trust	that	the	implementation	is	correct.
Keycards	are	harder	to	update:	the	firmware	may	be	deliberately	inaccessible	to	the	host	for	security	reasons	or	may
require	special	software	to	manipulate.	Keycards	may	be	slower	than	the	CPU	in	performing	certain	operations
because	they	are	small	embedded	microcontrollers	with	limited	computing	power.

Finally,	keycards	may	encourage	users	to	trust	multiple	machines	with	their	secrets,	which	works	against	the
"minimum	personal	data"	principle.	A	completely	different	approach	called	the	trusted	physical	console	(TPC)	does
the	opposite:	instead	of	trying	to	get	private	key	material	onto	all	of	those	machines,	just	have	them	on	a	single
machine	that	is	used	for	everything.	Unlike	a	keycard,	the	TPC	is	an	actual	computer,	say	a	laptop,	which	has	the
advantage	of	needing	no	special	procedure	to	manage	keys.	The	downside	is,	of	course,	that	you	actually	need	to
carry	that	laptop	everywhere	you	go,	which	may	be	problematic,	especially	in	some	corporate	environments	that
restrict	bringing	your	own	devices.

Quick	keycard	"howto"

Getting	keys	onto	a	keycard	is	easy	enough:

1.	 Start	with	a	temporary	key	to	test	the	procedure:

				export	GNUPGHOME=$(mktemp	-d)
				gpg	--generate-key

2.	 Edit	the	key	using	its	user	ID	(UID):

				gpg	--edit-key	UID

3.	 Use	the	key	command	to	select	the	first	subkey,	then	copy	it	to	the	keycard	(you	can	also	use	the	addcardkey
command	to	just	generate	a	new	subkey	directly	on	the	keycard):

				gpg>	key	1
				gpg>	keytocard

4.	 If	you	want	to	move	the	subkey,	use	the	save	command,	which	will	remove	the	local	copy	of	the	private	key,	so	the
keycard	will	be	the	only	copy	of	the	secret	key.	Otherwise	use	the	quit	command	to	save	the	key	on	the	keycard,
but	keep	the	secret	key	in	your	normal	keyring;	answer	"n"	to	"save	changes?"	and	"y"	to	"quit	without	saving?"	.
This	way	the	keycard	is	a	backup	of	your	secret	key.

5.	 Once	you	are	satisfied	with	the	results,	repeat	steps	1	through	4	with	your	normal	keyring	(unset	$GNUPGHOME)

When	a	key	is	moved	to	a	keycard,	--list-secret-keys	will	show	it	as	sec>	(or	ssb>	for	subkeys)	instead	of	the	usual	sec
keyword.	If	the	key	is	completely	missing	(for	example,	if	you	moved	it	to	a	LUKS	container),	the	#	sign	is	used
instead.	If	you	need	to	use	a	key	from	a	keycard	backup,	you	simply	do	gpg	--card-edit	with	the	key	plugged	in,	then
type	the	fetch	command	at	the	prompt	to	fetch	the	public	key	that	corresponds	to	the	private	key	on	the	keycard
(which	stays	on	the	keycard).	This	is	the	same	procedure	as	the	one	to	use	the	secret	key	on	another	computer.

Conclusion

Send	a	free	link

There	are	already	informal	OpenPGP	best-practices	guides	out	there	and	some	recommend	storing	keys	offline,	but
they	rarely	explain	what	exactly	that	means.	Storing	your	primary	secret	key	offline	is	important	in	dealing	with
possible	compromises	and	we	examined	the	main	ways	of	doing	so:	either	with	an	air-gapped	system,	LUKS-
encrypted	keyring,	or	by	using	keycards.	Each	approach	has	its	own	tradeoffs,	but	I	recommend	getting	familiar	with
keycards	if	you	use	multiple	computers	and	want	a	standardized	interface	with	minimal	configuration	trouble.

And	of	course,	those	approaches	can	be	combined.	This	tutorial,	for	example,	uses	a	keycard	on	an	air-gapped
computer,	which	neatly	resolves	the	question	of	how	to	transmit	signatures	between	the	air-gapped	system	and	the
world.	It	is	definitely	not	for	the	faint	of	heart,	however.

Once	one	has	decided	to	use	a	keycard,	the	next	order	of	business	is	to	choose	a	specific	device.	That	choice	will	be
addressed	in	a	followup	article,	where	I	will	look	at	performance,	physical	design,	and	other	considerations.

Did	you	like	this	article?	Please	accept	our	trial	subscription	offer	to	be	able	to	see	more	content	like
it	and	to	participate	in	the	discussion.

(Log	in	to	post	comments)

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	9:43	UTC	(Tue)	by	merge	(subscriber,	#65339)	[Link]

Why	isn't	there	the	concept	of	a	temporary	signing	key	(and	certificate),	derived	from	a	master	key?	I'd	happily
re-upload	a	new	signing	key	every	X	months	and	have	it	on	all	my	devices	when	I	know	it	expires.	My	master
identity	key	could	stay	super	safe	and	would	never	have	to	change.	The	one	extra	step	of	verifying	that	a
current	signing	(public)	key	is	derived	from	the	one	master	(public)	key	doesn't	seem	too	heavy.	...but	that's
easily	said	without	thinking	it	all	through	:)

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	10:32	UTC	(Tue)	by	grawity	(subscriber,	#80596)	[Link]

…There	is?

You	can	already	have	a	separate	subkey	for	signing	files/messages,	which	expires	in	a	month	or	two.

The	master	key	is	only	required	for	certifying	other	keys	and	updates	to	your	own	subkeys,	e.g.	when	you	need
to	add	a	subkey	or	update	the	expiry	time.

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	12:10	UTC	(Tue)	by	ms	(subscriber,	#41272)	[Link]

Yeah,	I	have	all	my	subkeys	expire	every	90	days	which	lines	up	with	my	letsencrypt	certs	expiring.	So	once
every	80	days	I	get	a	reminder	to	renew	everything.

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	13:28	UTC	(Tue)	by	merge	(subscriber,	#65339)	[Link]

That's	nice,	making	use	of	letsencrypt	that	way!

So,	why	use	key	cards?	Creating	known-good	keys	that	in	turn	*can*	get	compromised	until	they	expire	seems
more	cheap,	more	safe,	and	more	easy	to	use,	especially	when	you're	at	it	anyways,	regularly	finding	a	place	to
unlock	your	most	secured	files	for	a	very	short	period	of	time.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	6:48	UTC	(Thu)	by	madhatter	(subscriber,	#4665)	[Link]

Because	you're	probably	not	the	only	person	that	uses	your	public	key.	If	you're	only	using	gpg	to	secure
your	files	on	your	hardware,	your	point	is	valid.	But	if	others	use	your	key	to	correspond	with	you,	and	you
change	it	every	80	days,	they	have	a	big	key	validity	problem	every	80	days.

If	instead	you	have	one	highly-secure	long-lived	key	that's	on	a	HSM,	and	you	use	it	to	sign	your	ephemeral
encryption	keys,	then	any	correspondent	who	has	the	public	part	of	your	long-lived	signing	key	can	get	your
current	public	key	off	any	old	keyserver	and	immediately	know	whether	to	trust	it	or	not.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	7:00	UTC	(Thu)	by	merge	(subscriber,	#65339)	[Link]

That's	true.	But	for	example	Debian	encourages	to	use	signing	subkeys,	see
https://wiki.debian.org/Subkeys	(although	not	explicitely	short-term	keys).	But	in	the	end	I	guess	you'd	only
have	to	wait	until	your	new	signing	subkey	has	landed	in	all	keyrings	and	let	your	current	one	expire,
which	is	solved	by	overlapping	the	key	validity	intervals	by	a	few	weeks	and	always	using	the	oldest.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	12:53	UTC	(Thu)	by	anarcat	(subscriber,	#66354)	[Link]

One	of	the	problem	I've	encountered	with	having	multiple	signing	keys	is	that	not	all	programs	using
GPG	make	it	easy	to	choose	which	key	to	use	for	signing.	Last	month,	for	example,	I	added	that	signing
key	and	that	key	took	well...	about	a	month	to	propagate	through	Debian's	infrastructure.	That	gave	me
time	to	notice	that:

1.	gpg	chooses	the	latest	signing	subkey	(I	would	have	expected	it	would	sign	with	all	available	signing
subkeys)
2.	notmuch-emacs	and	mutt	do	not	allow	you	to	choose	which	subkey	to	use	to	sign	outgoing	messages
3.	debsign	*does*	allow	you	to	choose	the	signing	subkey,	but	that's	about	the	only	thing

I	had	to	go	back	to	inline	signing	to	send	email...	And	I	had	to	specify	the	signing	key	with	a	bang	("!")	at
the	end,	which	was	weird	and	unusual	(I	would	have	expected	the	keygrip	to	work	here	for	example).

So	in	short,	it's	a	pain	in	the	back	to	rotate	signing	keys,	I	wouldn't	recommend	having	a	workflow	based
on	doing	that	on	a	regular	basis,	unless	you	control	key	propagation.

Communicating	with	an	air-gapped	system
Posted	Oct	3,	2017	9:46	UTC	(Tue)	by	epa	(subscriber,	#39769)	[Link]

Wouldn't	the	old-fashioned	serial	port	be	a	better	choice	than	USB	for	getting	information	to	and	from	your	air-
gapped	system?	The	serial	port	can	even	be	constrained	in	hardware	to	be	output-only,	or	input-only,	just	by	not
connecting	some	of	the	pins.

Communicating	with	an	air-gapped	system
Posted	Oct	3,	2017	11:52	UTC	(Tue)	by	Funcan	(subscriber,	#44209)	[Link]

It	would,	if	only	I	owned	a	single	machine	with	a	serial	port...

You	can	start	to	look	at	USB	<->	serial	converters	and	such,	but	really	they	just	become	an	implementation
detail	of	"design	a	secure	dongle".

Communicating	with	an	air-gapped	system
Posted	Oct	3,	2017	17:57	UTC	(Tue)	by	drag	(subscriber,	#31333)	[Link]

If	you	want	something	really	dumb	and	simple	and	one-way	then	printing	out	to	QR	code	and	getting	brain-dead
2d	code	scanner	may	be	useful.	The	simple	scanners	are	essentially	just	keyboards	that	type	out	whatever	you
scan	in	+	a	programmable	code	(tab	key	vs	return	key,	etc).

You	could	print	out	the	master	code,	destroy	the	digital	copies	and	just	use	that.	You	could	even	be	all	cloak	and
dagger,	encrypt	the	master	and	split	the	code	up	into	2	or	more	fragments.	Keep	one	half	locked	in	your	desk
and	the	second	half	in	a	laminated	card	in	your	wallet.	Or	maybe	have	a	'little	black	book'	of	keys	you	can	scan
in	and	then	have	the	password	to	decrypt	them	in	your	wallet.	

The	downside	is	that	you	lose	all	the	features	of	a	proper	keycard.	The	upside	is	that	pretty	much	everything
you	need	is	at	your	local	office	supply	store.	

Communicating	with	an	air-gapped	system
Posted	Oct	5,	2017	13:17	UTC	(Thu)	by	genaro	(subscriber,	#82632)	[Link]

>	If	you	want	something	really	dumb	and	simple	and	one-way	then	printing	out	to	QR	code	and	getting	brain-
dead	2d	code	scanner	may	be	useful.	The	simple	scanners	are	essentially	just	keyboards	that	type	out	whatever
you	scan	in	+	a	programmable	code	(tab	key	vs	return	key,	etc).

I	did	a	research	paper	in	college	on	this	topic.	It's	feasible	to	export	ascii-armored	keys	and	read	them	with	QR.
4096-bit	RSA	keys	are	rough,	but	workable.	With	newer	EC	keys	the	QR	method	gets	much,	much	easier.	

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	10:11	UTC	(Tue)	by	ngiger@mus.ch	(subscriber,	#4013)	[Link]

Did	you	look	at	the	https://www.crowdsupply.com/nth-dimension/signet.	It	looks	for	me	like	a	good	compromise
between	ease	to	use	and	privacy.

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	11:31	UTC	(Tue)	by	anarcat	(subscriber,	#66354)	[Link]

I	have.	Signet	is	interesting	because	it	runs	a	similar	platform	than	the	FST-01	(STM32L442	microcontroller,
while	the	FST-01	uses	STM3F103)	so	presumably,	it	may	be	possible	to	port	Gnuk	to	it.	However,	the	application
deployed	on	Signet	by	default	is	*only*	a	password	manager	from	what	I	can	tell.	Furthermore,	Signet	is	not	in
production	at	the	time	of	writing,	the	crowdfunding	is	not	over	yet.

Strategies	for	offline	PGP	key	storage
Posted	Oct	4,	2017	23:35	UTC	(Wed)	by	nnesse	(guest,	#118902)	[Link]

Hi,	I	am	the	creator	of	Signet.	I	just	wanted	to	say	that	I	am	very	interested	in	adding	more	cryptographic
functions	to	the	device.	It's	internal	database	is	flexible	enough	that	PGP	key	storage	could	be	done	as	an	add-
on.	There	is	a	bit	of	a	balancing	act	in	terms	of	the	space	needed	to	store	GPG	keys	and	algorithms	as	well	as
the	data	and	algorithms	for	password	management	but	I	think	there	is	room	for	it	all.	This	is	something	I	will

probably	develop	once	I've	completed	all	the	features	I've	already	promised.	I	wasn't	aware	of	Gnuk	before.	I
may	incorporate	it	directly	or	consider	making	a	compatible	interface.

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	13:40	UTC	(Tue)	by	eahay	(subscriber,	#110720)	[Link]

Another	option	is	a	NitroKey	https://www.nitrokey.com

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	19:54	UTC	(Tue)	by	dd9jn	(subscriber,	#4459)	[Link]

Depending	on	the	model	Nitrokey	either	uses	the	Gnuk	software	or	a	standard	OpenPGP	card	from	Zeitcontrol
for	public	key	operations.

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	19:58	UTC	(Tue)	by	anarcat	(subscriber,	#66354)	[Link]

I	encourage	people	to	wait	for	the	next	article	in	the	series	before	discussing	the	details	of	all	those	keycards.
In	the	next	article,	I	will	review	the	Nitrokey	PRO,	the	FST-01,	the	Yubikey	4	and	NEO,	including	benchmarks
and	cute	graphics.	Stay	tuned!	:)

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	2:51	UTC	(Thu)	by	Trelane	(subscriber,	#56877)	[Link]

awesome!	I'm	looking	forward	to	it.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	6:34	UTC	(Thu)	by	intrigeri	(subscriber,	#82634)	[Link]

Excellent,	thanks!

Strategies	for	offline	PGP	key	storage
Posted	Oct	3,	2017	22:14	UTC	(Tue)	by	dsommers	(subscriber,	#55274)	[Link]

I	do	have	Nitrokey	Pro	and	it	worked	wonderfully	well	on	my	Scientific	Linux	7.3	box	(not	too	fast,	but	I	can
survive	that);	it	wasn't	too	easy	to	get	it	working,	though	-	I	remember	I	needed	some	tweaks.

But	after	I	switched	to	RHEL	7.4,	gpg	--card-status	gives	me	"Card	error"	-	BUT	running	openpgp-tool	works!	So
it	seems	gpg	is	grumpy	about	it	for	some	reasons.	Anyone	got	a	good	idea	what	could	be	the	issue?	I	might	have
forgotten	a	silly	step,	but	can't	figure	out	what	it	could	be.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	4:53	UTC	(Thu)	by	jans	(guest,	#108889)	[Link]

I	suspect	this	is	related	to	access	restrictions	and	usually	is	solved	by	proper	UDEV	rules.	See	these
instructions.

Strategies	for	offline	PGP	key	storage
Posted	Oct	5,	2017	9:22	UTC	(Thu)	by	dsommers	(subscriber,	#55274)	[Link]

Thank	you!	I	actually	had	those	rules	installed.	But	there	was	a	slight	detail	I	hadn't	noticed	until	your
comment.	The	udev	rules	uses	GROUP="plugdev";	a	group	name	which	does	not	exist	on	RHEL.	Changing
that	to	a	group	which	exists	and	makes	more	sense	on	my	setup	and	it	worked.

Again,	thank	you!

misusing	USB	keycards?
Posted	Oct	4,	2017	16:20	UTC	(Wed)	by	faramir	(subscriber,	#2327)	[Link]

If	you	enable	USB	on	a	system	so	you	can	use	a	USB	based	keycard,	aren't	you	leaving	that	system	open	to
BadUSB	or	similar	attacks?
If	an	attacker	has	control	over	the	computer	in	which	the	keycard	is	installed,	they	can	subvert	your	data	before
it	is	sent	to	the	card.	Or	simply	just	use	the	card	directly.

If	the	keycard	caches	your	password,	could	they	wait	until	you	authenticate	to	the	card	and	then	piggyback	on
that	authentication	for	their	own	operations?	Is	there	any	indication	on	the	keycard	when	it	is	being	actively
used?	

Or	maybe	they	capture	the	password	as	you	enter	it	and	exfiltrate	it.	Next	time	you	go	to	Starbucks,	they	mug
you	and	steal	your	keycard	as	well	as	your	wallet.	Depending	on	how	high	value	a	target	you	are,	this	seems
reasonable.	If	you	are	a	developer,	you	might	be	a	much	higher	value	target	then	you	realize;	depending	on	who
uses	the	software	that	you	write.	

misusing	USB	keycards?
Posted	Oct	4,	2017	20:52	UTC	(Wed)	by	anarcat	(subscriber,	#66354)	[Link]

If	you	enable	USB	on	a	system	so	you	can	use	a	USB	based	keycard,	aren't	you	leaving	that	system

open	to	BadUSB	or	similar	ttacks?

Yes,	it's	one	of	my	core	criticism	of	"airgapped"	systems:	they	are	never	really	airgapped.	If	you	are	referring	to
normal	systems,	I	frankly	don't	know	if	you	can	still	run	an	interactive	terminal	*without*	USB	these	days.
Unless	you	have	a	PS/2	mouse	and	keyboard	(and	port!),	you're	pretty	much	forced	to	use	USB	and	therefore
exposed	to	that	vector	anyways.

If	an	attacker	has	control	over	the	computer	in	which	the	keycard	is	installed,	they	can	subvert	your
data	before	it	is	sent	to	the	card.	Or	simply	just	use	the	card	directly.

Yep.	They	can	use	the	card	to	do	any	operations	it	requires.	But	the	point	is	they	can	do	that	only	when	it's
plugged	in:	the	second	the	key	is	unplugged,	they	can't	do	their	evil	thing	anymore.	Furthermore,	they	can't
"steal"	the	key	from	you,	unless	they	can	find	a	way	to	subvert	the	keycard	controller	somehow,	which	is	a
critical	difference	with	having	the	key	on-disk.

If	the	keycard	caches	your	password,	could	they	wait	until	you	authenticate	to	the	card	and	then
piggyback	on	that	authentication	for	their	own	operations?	Is	there	any	indication	on	the	keycard
when	it	is	being	actively	used?

Yes,	they	could	and	no,	there's	*generally*	no	visual	indicator	(although	the	Yubikey	NEO	does	have	a	neat	little
LED	in	the	middle	that	buzzes	when	things	are	happening	on	the	key.	It's	hardly	usable	as	an	indicator,
however.

I	would	rather	see	a	keycard	that	would	force	me	to	tap	it	to	confirm	operations.	Really,	if	you're	concerned
about	that	level	of	attacks,	you	should	use	one	of	those	card	readers	that	requires	a	PIN	to	be	entered	before
operations	are	allowed	on	the	key.

Or	maybe	they	capture	the	password	as	you	enter	it	and	exfiltrate	it.	Next	time	you	go	to	Starbucks,
they	mug	you	and	steal	your	keycard	as	well	as	your	wallet.	Depending	on	how	high	value	a	target	you
are,	this	seems	reasonable.	If	you	are	a	developer,	you	might	be	a	much	higher	value	target	then	you
realize;	depending	on	who	uses	the	software	that	you	write.

I'm	not	sure	there	are	such	great	protections	against	mugging.	Pipewrench	cryptography	beats	any	design	you
can	create,	really	-	if	that's	your	threat	model,	it	seems	to	me	you're	setting	yourself	up	to	failure.

I'm	not	claiming	offline	key	storage	is	the	silver	bullet,	but	it	does	solve	*some*	attack	scenarios.	The	question	is
if	the	tradeoffs	are	worth	it	for	*you*.

misusing	USB	keycards?
Posted	Oct	4,	2017	21:43	UTC	(Wed)	by	Cyberax	(✭	supporter	✭,	#52523)	[Link]

My	Yubikey	prompts	me	to	tap	on	it	when	it	needs	to	do	a	U2F	or	OTP	signature.

misusing	USB	keycards?
Posted	Oct	4,	2017	21:44	UTC	(Wed)	by	karkhaz	(subscriber,	#99844)	[Link]

>	Yes,	they	could	and	no,	there's	*generally*	no	visual	indicator	(although	the	Yubikey	NEO	does	have	a	neat
little	LED	in	the	middle	that	buzzes	when	things	are	happening	on	the	key.	It's	hardly	usable	as	an	indicator,
however.	I	would	rather	see	a	keycard	that	would	force	me	to	tap	it	to	confirm	operations.

Is	the	touch-to-sign	feature	on	YubiKey	4	what	you're	looking	for?

>	YubiKey	4	introduces	a	new	touch	feature	that	allows	to	protect	the	use	of	the	private	keys	with	an	additional
layer.	When	this	functionality	is	enabled,	the	result	of	a	cryptographic	operation	involving	a	private	key
(signature,	decryption	or	authentication)	is	released	only	if	the	correct	user	PIN	is	provided	_and_	the	YubiKey
touch	sensor	is	triggered

https://developers.yubico.com/PGP/Card_edit.html

misusing	USB	keycards?
Posted	Oct	5,	2017	12:55	UTC	(Thu)	by	anarcat	(subscriber,	#66354)	[Link]

That's	pretty	neat,	i	gotta	say.	:)

misusing	USB	keycards?
Posted	Oct	5,	2017	10:44	UTC	(Thu)	by	tao	(subscriber,	#17563)	[Link]

I	always	figured	air-gapped	meant	that	the	system	isn't	accessible	remotely,	not	that	local	attackers	aren't	able
to	reach	it.	If	you	have	local	access	to	hardware,	generally	all	bets	are	off.	An	airgapped	system	isn't	connected
by	WIFI,	BT,	ethernet,	or	whatever	other	means	you	use	to	connect	to	a	network,	and	is	preferably	kept	in	a
shielded	environment.	This	is	the	kind	of	spec	needed	for	things	like	machines	used	for	signing	top	level
certificates,	etc.

The	term	I'd	normally	associate	with	a	system	that	can	withstand	things	like	badUSB	would	be	tamper-proof.	An
ATM,	for	instance.

Sometimes	there's	an	overlap,	and	there	are	degrees	of	airgapping	and	tamper-proofing.	You	probably	don't
want	wifi,	BT,	etc.	for	your	ATM,	but	it's	definitely	connected	to	the	Internet,	though	hopefully	on	a	VLAN.

misusing	USB	keycards?
Posted	Oct	5,	2017	12:57	UTC	(Thu)	by	anarcat	(subscriber,	#66354)	[Link]

if	you're	connected	anyways,	where's	the	gap	then?

I	could	have	written	a	whole	article	about	air-gapped	computers	-	that	wasn't	my	purpose	here.	It's	one	of	the
approaches	you	can	use,	and	i	know	it	has	its	merits.	the	problem	is	the	tradeoffs	seem	off	to	me.	if	you're
connected	to	the	internet	anyways,	how	does	it	differ	from	a	workstation	behind	a	LAN?

the	definitions	of	"air-gapped"	sure	seem	pretty	flexible	around	here...	:p	which	is	another	problem:	if	we	don't
have	a	clear	definition	of	what	an	"air	gap"	is,	you're	going	to	have	trouble	creating	a	proper	threat	model
analysis...

misusing	USB	keycards?
Posted	Oct	5,	2017	15:05	UTC	(Thu)	by	nybble41	(subscriber,	#55106)	[Link]

>	if	you're	connected	to	the	internet	anyways,	how	does	it	differ	from	a	workstation	behind	a	LAN?	...	the
definitions	of	"air-gapped"	sure	seem	pretty	flexible	around	here...

It	doesn't.	You	and	tao	are	both	saying	that	an	"air-gapped"	system	is	not	connected	to	either	the	Internet	or
a	LAN.	The	difference	is	that	tao's	definition	of	"air-gapped"	(reasonably,	IMHO)	does	not	encompass
protection	against	a	local	attacker	with	physical	access	to	the	system,	e.g.	the	BadUSB	attack.	That	threat
model	requires	a	system	which	is	"tamper-proof",	which	is	a	separate	consideration	from	"air-gapped".	A
"tamper-proof"	system	can	have	network	links	(e.g.	ATMs)	and	an	"air-gapped"	system	can	have	USB	ports.
(Suitably	restricted,	of	course—you	don't	your	air-gapped	system	to	automatically	establish	an	Internet
connection	just	because	someone	plugged	a	USB	network	adapter	into	the	port	intended	for	security	keys.
However,	that	can	be	addressed	by	limiting	the	USB	drivers	available,	and/or	configuring	a	whitelist	of
allowed	devices.)

Copyright	©	2017,	Eklektix,	Inc.
Comments	and	public	postings	are	copyrighted	by	their	creators.

Linux	is	a	registered	trademark	of	Linus	Torvalds

