Q

Topics
Infrastructure Mobile ZXCmepEealiStiC paSS’W@I‘éde
strength estimation
Security
Dan Wheeler| April 10, 2012
Subscribe

L i I 3

Subscrib d getupd ,
ubscribe and 9et UPARTo 1 the last few months, I've seen a password strength meter on almost
every signup Yorm I've encountered. Password strength meters are on fire.

Follow us: W n m

Dropbox blogs Here's a question: does a meter actually help people secure their accounts?

It's less important than other areas of web security, a short sample of which

Dropbox Blog incllﬂ@gbox Business Blog Dropbox Developer Blog Drop Everything (Australia)

Dropbox Business Blog DE Dropbox Business Blog FR Dropbox Business Blog NL_ Dropbox Business Blog UK
e Preventing online cracking with throttling or CAPTCHAs.

Dropbox Navi (Japan) » Preventing effling crasking by selecting a suitably slow hash function
with user-unique salts.
e Securing said password hashes.

With that disclaimer — yes. I'm convinced these meters have the potential
to help. According to Mark Burnett’'s 2006 book, Perfect Passwords:
Selection, Protection, Authentication, which counted frequencies from a few
million passwords over a variety of leaks, one in nine people had a password
in this top 500 list. These passwords include some real stumpers:
passwordl, compaq, 7777777, merlin, rosebud. Burnett ran a more recent
study last year, looking at 6 million passwords, and found an insane 99.8%
occur in the top 10,000 list, with 91% in the top 1,000. The methodology
and bias is an important qualifier — for example, since these passwords
mostly come from cracked hashes, the list is biased towards crackable
passwords to begin with.

These are only the really easy-to-guess passwords. For the rest, I'd wager a
large percentage are still predictable enough to be susceptible to a modest
online attack. So | do think these meters could help, by encouraging
stronger password decisions through direct feedback. But right now, with a
few closed-source exceptions, | believe they mostly hurt. Here’s why.

Strength is best measured as entropy, in bits: it's the number of times a
space of possible passwords can be cut in half. A naive strength estimation
goes like this:

n: password length

c: password cardinality: the size of the symbol space

(26 for lowercase letters only, 62 for a mix of lower+upper+numbers)
entropy = n *Ig(c) # base 2 log

https://dropboxtechblog.files.wordpress.com/2012/04/meter_screenshot.png
http://www.amazon.com/Perfect-Password-Selection-Protection-Authentication/dp/1597490415
http://xato.net/wp-content/xup/passwordscloud.png
http://xato.net/passwords/more-top-worst-passwords
http://xato.net/passwords/how-i-collect-passwords
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://blogs.dropbox.com/tech/category/infrastructure/
https://blogs.dropbox.com/tech/category/mobile/
https://blogs.dropbox.com/tech/category/open-source/
https://blogs.dropbox.com/tech/category/performance/
https://blogs.dropbox.com/tech/category/security/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
http://www.twitter.com/Dropbox
http://www.facebook.com/Dropbox
http://www.linkedin.com/company/dropbox
https://plus.google.com/b/103316200298703443962/+Dropbox/posts
https://blogs.dropbox.com/tech/feed/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://blogs.dropbox.com/dropbox/
https://blogs.dropbox.com/business/
https://blogs.dropbox.com/developers
https://dropeverything.com.au/
https://www.dropboxbusinessblog.de/
https://www.dropboxbusinessblog.fr/
https://www.dropboxbusinessblog.nl/
https://dropboxbusinessblog.co.uk/
https://navi.dropbox.jp/
https://navi.dropbox.jp/business/
https://blogs.dropbox.com/tech/

This brute-force analysis is accurate for people who choose random
sequences of letters, numbers and symbols. But with few exceptions
(shoutout to 1Password / KeePass), people of course choose patterns —
dictionary words, spatial patterns like qwerty, asdf or zxcvbn, repeats like
aaaaaaa, sequences like abcdef or 654321, or some combination of the above.
For passwords with uppercase letters, odds are it's the first letter that's
uppercase. Numbers and symbols are often predictable as well: 133t speak
(3 for e, 0 for o, @ or 4 for a), years, dates, zip codes, and so on.

As a result, simplistic strength estimation gives bad advice. Without
checking for common patterns, the practice of encouraging numbers and
symbols means encouraging passwords that might only be slightly harder
for a computer to crack, and yet frustratingly harder for a human to
remember. xkcd nailed it:

As an independent Dropbox hackweek project, | thought it'd be fun to build
an open source estimator that catches common patterns, and as a corollary,
doesn’t penalize sufficiently complex passphrases like
correcthorsebatterystaple. It's now live on dropbox.com/register and available
for use on github. Try the demo to experiment and see several example
estimations.

The table below compares zxcvbn to other meters. The point isn't to

dismiss the others — password policy is highly subjective — rather, it's to
give a better picture of how zxcvbn is different.

qwER43@! TrOub4dour&3 correcthorsebatterystaple

zxcvbn

https://agilebits.com/onepassword
http://keepass.info/
https://xkcd.com/936/
https://techcrunch.com/2012/03/26/a-peek-inside-dropboxs-company-wide-hack-week-at-its-big-new-sf-offices/
https://www.dropbox.com/register
https://github.com/dropbox/zxcvbn
https://lowe.github.io/tryzxcvbn/
https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-troub.png
https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-correct.png

Dropbox
(old)

Citibank

Bank of (not allowed) (not allowed)
America

Twitter

PayPal

eBay

Facebook

Yahoo!

Gmail

A few notes:

(not allowed)

(not allowed)

o | took these screenshots on April 3rd, 2012. | needed to crop the bar from
the gmail signup form to make it fit in the table, making the difference in
relative width more pronounced than on the form itself.

zxcvbn considers correcthorsebatterystaple the strongest password of the
3. The rest either consider it the weakest or disallow it. (Twitter gives
about the same score for each, but if you squint, the scores are slightly
different.)

zxcvbn considers gwER43@! weak because it's a short QWERTY pattern.
It adds extra entropy for each turn and shifted character.

The PayPal meter considers gwER43@! weak but aaAA11!! strong.
Speculation, but that might be because it detects spatial patterns too.
Bank of America doesn't allow passwords over 20 characters,
disallowing correcthorsebatterystaple. Passwords can contain some
symbols, but not & or !, disallowing the other two passwords. eBay
doesn't allow passwords over 20 characters either.

Few of these meters appear to use the naive estimation | opened with;
otherwise correcthorsebatterystaple would have a high rating from its long
length. Dropbox used to add points for each unique lowercase letter,

uppercase letter, number, and symbol, up to a certain cap for each

https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-correct.png
https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-correct.png
https://dropboxtechblog.files.wordpress.com/2012/04/zxcvbn-troub.png
https://dropboxtechblog.files.wordpress.com/2012/04/citi-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/citi-troub.png
https://dropboxtechblog.files.wordpress.com/2012/04/citi-correct.png
https://dropboxtechblog.files.wordpress.com/2012/04/twitter-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/twitter-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/twitter-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/paypal-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/paypal-troub.png
https://dropboxtechblog.files.wordpress.com/2012/04/paypal-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/ebay-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/ebay-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/facebook-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/facebook-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/facebook-correct.png
https://dropboxtechblog.files.wordpress.com/2012/04/yahoo-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/yahoo-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/yahoo-correct.png
https://dropboxtechblog.files.wordpress.com/2012/04/gmail-qwer.png
https://dropboxtechblog.files.wordpress.com/2012/04/gmail-qwer1.png
https://dropboxtechblog.files.wordpress.com/2012/04/gmail-correct.png
https://accounts.google.com/SignUp?service=mail

group. This mostly has the same only-works-for-brute-force problem,

although it also checked against a common passwords dictionary. | don't

know the details behind the other meters, but a scoring checklist is

another common approach (which also doesn’t check for many patterns).
¢ | picked Troubadour to be the base word of the second column, not

Troubador as occurs in xkcd, which is an uncommon spelling.

Installation

zxcvbn has no dependencies and works on ie7+/opera/ff/safari/chrome.
The best way to add it to your registration page is:

<script type="text/javascript" src="zxcvbn-async.js">
</script>

zxcvbn-async.js is a measly 350 bytes. On window.load, after your page loads
and renders, it'll load zxcvbn.js, a fat 680k (320k gzipped), most of which is
a dictionary. | haven't found the script size to be an issue; since a password
is usually not the first thing a user enters on a signup form, there's plenty of
time to load. Here's a comprehensive rundown of crossbrowser
asynchronous script loading.

zxcvbn adds a single function to the global namespace:

zxcvbn(password, user_inputs)

It takes one required argument, a password, and returns a result object. The
result includes a few properties:

result.entropy # bits
result.crack_time # estimation of actual crack time, in seconds.
result.crack_time_display # same crack time, as a friendlier string:

"instant", "6 minutes", "centuries", etc.
result.score #0,1,2,3o0r4if crack time is less than

10%*2, 10*%*%4, 10**6, 10**8, Infinity.

(helpful for implementing a strength bar.)
result.match_sequence # the detected patterns used to calculate entropy.
result.calculation_time # how long it took to calculate an answer,

in milliseconds. usually only a few ms.

The optional user_inputs argument is an array of strings that zxcvbn will add
to its internal dictionary. This can be whatever list of strings you like, but it's
meant for user inputs from other fields of the form, like name and email.
That way a password that includes the user’s personal info can be heavily
penalized. This list is also good for site-specific vocabulary. For example,
ours includes dropbox.

zxcvbn is written in CoffeeScript. zxcvbn.js and zxcvbn-async.js are
unreadably closure-compiled, but if you'd like to extend zxcvbn and send
me a pull request, the README has development setup info.

http://www.passwordmeter.com/
http://friendlybit.com/js/lazy-loading-asyncronous-javascript/
https://developers.google.com/closure/compiler/
https://github.com/lowe/zxcvbn#readme

The rest of this post details zxcvbn's design.

The model
zxcvbn consists of three stages: match, score, then search.

 match enumerates all the (possibly overlapping) patterns it can detect.
Currently zxcvbn matches against several dictionaries (English words,
names and surnames, Burnett's 10,000 common passwords), spatial
keyboard patterns (QWERTY, Dvorak, and keypad patterns), repeats
(aaa), sequences (123, gfedcba), years from 1900 to 2019, and dates (3-13-
1997, 13.3.1997, 1331997). For all dictionaries, match recognizes
uppercasing and common 33t substitutions.

* score calculates an entropy for each matched pattern, independent of
the rest of the password, assuming the attacker knows the pattern. A
simple example: rrrrr. In this case, the attacker needs to iterate over all

repeats from length 1 to 5 that start with a lowercase letter:

entropy = Ig(26*5) # about 7 bits

¢ search is where Occam’s razor comes in. Given the full set of possibly
overlapping matches, search finds the simplest (lowest entropy) non-
overlapping sequence. For example, if the password is damnation, that
could be analyzed as two words, dam and nation, or as one. It's important
that it be analyzed as one, because an attacker trying dictionary words
will crack it as one word long before two. (As an aside, overlapping
patterns are also the primary agent behind accidentally tragic domain
name registrations, like childrens-laughter.com but without the hyphen.)

Search is the crux of the model. I'll start there and work backwards.

Minimum entropy search

zxcvbn calculates a password'’s entropy to be the sum of its constituent
patterns. Any gaps between matched patterns are treated as brute-force
“patterns” that also contribute to the total entropy. For example:

entropy("stockwell4$eR123698745") == surname_entropy("stockwell") +
bruteforce_entropy("4$eR") +
keypad_entropy("123698745")

That a password’s entropy is the sum of its parts is a big assumption.
However, it's a conservative assumption. By disregarding the “configuration
entropy” — the entropy from the number and arrangement of the pieces —
zxcvbn is purposely underestimating, by giving a password’s structure away
for free: It assumes attackers already know the structure (for example,
surname-bruteforce-keypad), and from there, it calculates how many
guesses they'd need to iterate through. This is a significant underestimation

http://childrens-laughter.com/

for complex structures. Considering correcthorsebatterystaple, word-word-
word-word, an attacker running a program like LOphtCrack or John the
Ripper would typically try many simpler structures first, such as word, word-
number, or word-word, before reaching word-word-word-word. I'm OK with
this for three reasons:

e |t's difficult to formulate a sound model for structural entropy;
statistically, | don't happen to know what structures people choose most,
so I'd rather do the safe thing and underestimate.

¢ For a complex structure, the sum of the pieces alone is often sufficient to
give an “excellent” rating. For example, even knowing the word-word-
word-word structure of correcthorsebatterystaple, an attacker would need
to spend centuries cracking it.

e Most people don't have complex password structures. Disregarding
structure only underestimates by a few bits in the common case.

With this assumption out of the way, here’s an efficient dynamic
programming algorithm in CoffeeScript for finding the minimum non-

overlapping match sequence. It runs in O(n-m) time for a length-n password
with m (possibly overlapping) candidate matches.

matches: the password's full array of candidate matches.
each match has a start index (match.i) and an end index (match.j) into
the password, inclusive.
minimum_entropy match_sequence = (password, matches) ->
e.g. 26 for lowercase-only
bruteforce_cardinality = calc_bruteforce_cardinality password
up_to_k =[] # minimum entropy up to k.
backpointers =[] # for the optimal sequence of matches up to k,
holds the final match (match.j == k).
null means the sequence ends w/ a brute-force char
for kin [0...password.length]
starting scenario to try to beat:
adding a brute-force character to the minimum entropy sequence at k-1.
up_to_k[k] = (up_to_k[k-1] or 0) + Ig bruteforce_cardinality
backpointers[k] = null
for match in matches when match.j ==
[i, j = [match.i, match.j]
see if minimum entropy up to i-1 + entropy of this match is less
than the current minimum at j.
candidate_entropy = (up_to_k[i-1] or 0) + calc_entropy(match)
if candidate_entropy < up_to_kI[j]
up_to_k[j] = candidate_entropy
backpointers[jl = match

walk backwards and decode the best sequence
match_sequence =[]
k = password.length - 1

while k >=0
match = backpointers[k]
if match

match_sequence.push match
k = match.i-1
else
k-=1
match_sequence.reverse()

fill in the blanks between pattern matches with bruteforce "matches"
that way the match sequence fully covers the password:
matchl.j == match2.i- 1 for every adjacent matchl, match2.
make_bruteforce_match = (i, j) ->

pattern: 'bruteforce’

i

it

token: passwordli..j]

entropy: Ig Math.pow(bruteforce_cardinality, j - i + 1)

http://www.l0phtcrack.com/
http://www.openwall.com/john/

cardinality. bruteforce_cardinality

k=0

match_sequence_copy =[]

for match in match_sequence # fill gaps in the middle
[i, j1 = [match.i, match.j]

ifi-k>0
match_sequence_copypush make_bruteforce_match(k, i- 1)
k=j+1

match_sequence_copy.push match
if k < password.length # fill gap at the end

match_sequence_copypush make_bruteforce_match(k, password.length - 1)
match_sequence = match_sequence_copy

or 0 corner case is for an empty password "
min_entropy = up_to_k[password.length - 1] or O
crack_time = entropy to_crack_time min_entropy

final result object

password: password

entropy: round_to_x digits min_entropy, 3
match_sequence: match_sequence
crack_time: round_to_x digits crack_time, 3
crack_time_display: display_time crack_time
score: crack_time_to_score crack_time

backpointers[j] holds the match in this sequence that ends at password
position j, or null if the sequence doesn’t include such a match. Typical of
dynamic programming, constructing the optimal sequence requires starting
at the end and working backwards.

Especially because this is running browser-side as the user types, efficiency
does matter. To get something up and running | started with the simpler
O(2™) approach of calculating the sum for every possible non-overlapping
subset, and it slowed down quickly. Currently all together, zxcvbn takes no
more than a few milliseconds for most passwords. To give a rough ballpark:
running Chrome on a 2.4 GHz Intel Xeon, correcthorsebatterystaple took
about 3ms on average. coRrecthOrseba++ery9/23/2007staple$ took about
12ms on average.

Threat model: entropy to crack time

Entropy isn't intuitive: How do | know if 28 bits is strong or weak? In other
words, how should | go from entropy to actual estimated crack time? This
requires more assumptions in the form of a threat model. Let's assume:

o Passwords are stored as salted hashes, with a different random salt per
user, making rainbow attacks infeasible.

o An attacker manages to steal every hash and salt. The attacker is now
guessing passwords offline at max rate.

e The attacker has several CPUs at their disposal.

Here's some back-of-the-envelope numbers:

for a hash function like bcrypt/scrypt/PBKDF2, 10ms is a safe lower bound
for one guess. usually a guess would take longer -- this assumes fast

hardware and a small work factor. adjust for your site accordingly if you

use another hash function, possibly by several orders of magnitude!
SINGLE_GUESS = .010 # seconds

NUM_ATTACKERS = 100 # number of cores guessing in parallel.

SECONDS_PER_GUESS = SINGLE_GUESS / NUM_ATTACKERS

http://en.wikipedia.org/wiki/Rainbow_table

entropy_to_crack_time = (entropy) ->
.5 * Math.pow(2, entropy) * SECONDS_PER_GUESS

| added a .5 term because we're measuring the average crack time, not the
time to try the full space.

This math is perhaps overly safe. Large-scale hash theft is a rare
catastrophe, and unless you're being specifically targeted, it's unlikely an
attacker would dedicate 100 cores to your single password. Normally an
attacker has to guess online and deal with network latency, throttling, and
CAPTCHAEs.

Entropy calculation

Up next is how zxcvbn calculates the entropy of each constituent pattern.
calc_entropy() is the entry point. It's a simple dispatch:

calc_entropy = (match) ->

return match.entropy if match.entropy?

entropy_func = switch match.pattern
when 'repeat' then repeat_entropy
when 'sequence’ then sequence_entropy
when 'digits’ then digits_entropy
when 'year' then year_entropy
when 'date’ then date_entropy
when 'spatial' then spatial_entropy
when 'dictionary' then dictionary_entropy

match.entropy = entropy_func match

| gave an outline earlier for how repeat_entropy works. You can see the full
scoring code on github, but I'll describe two other scoring functions here to
give a taste: spatial_entropy and dictionary_entropy.

Consider the spatial pattern qwertyhnm. It starts at q, its length is 9, and it
has 3 turns: the initial turn moving right, then down-right, then right. To
parameterize:

s # number of possible starting characters.
47 for QWERTY/Dvorak, 15 for pc keypad, 16 for mac keypad.
L # password length. L >= 2
t # number of turns. t <=1L-1
for example, a length-3 password can have at most 2 turns, like "gaw".
d # average "degree" of each key -- the number of adjacent keys.
about 4.6 for QWERTY/Dvorak. (g has 6 neighbors, tilda only has 1.)

The space of total possibilities is then all possible spatial patterns of length
L or less with t turns or less:

(i - 1) choose (j - 1) counts the possible configurations of turn points for a
length-i spatial pattern with j turns. The -1 is added to both terms because
the first turn always occurs on the first letter. At each of j turns, there's d
possible directions to go, for a total of &/ possibilities per configuration. An

https://github.com/lowe/zxcvbn/blob/master/scoring.coffee
https://dropboxtechblog.files.wordpress.com/2012/04/formula_spatial.png

attacker would need to try each starting character too, hence the s. This
math is only a rough approximation. For example, many of the alternatives
counted in the equation aren’t actually possible on a keyboard: for a length-
5 pattern with 1 turn, “start at g moving left” gets counted, but isn’t actually
possible.

CoffeeScript allows natural expression of the above:

lg = (n) -> Math.log(n) / Math.log(2)

nPk = (n, k) ->
return O ifk > n
result =1
result *= m for min [n-k+1..n]
result

nCk = (n, k) ->
return 1 ifk ==
k_fact =1
k_fact *= m for min [1..k]
nPk(n, k) / k_fact

spatial_entropy = (match) ->
if match.graph in ['qwerty’, 'dvorak']
s = KEYBOARD_STARTING_POSITIONS
d = KEYBOARD_AVERAGE_DEGREE
else
s = KEYPAD_STARTING_POSITIONS
d = KEYPAD_AVERAGE_DEGREE
possibilities = 0
L = match.token.length
t = match.turns
estimate num patterns w/ length L or less and t turns or less.
foriin [2..1]
possible_turns = Math.min(t, i - 1)
forjin [1..possible_turns]
possibilities += nCk(i- 1, j- 1) * s * Math.pow(d, j)
entropy = Ig possibilities
add extra entropy for shifted keys. (% instead of 5, A instead of a.)
math is similar to extra entropy from uppercase letters in dictionary
matches, see the next snippet below.
if match.shifted_count
S = match.shifted_count
U = match.token.length - match.shifted_count # unshifted count
possibilities = 0
possibilities += nCk(S + U, i) foriin [0..Math.min(S, U)]
entropy += Ig possibilities
entropy

On to dictionary entropy:

dictionary_entropy = (match) ->
entropy = Ig match.rank
entropy += extra_uppercasing_entropy match
entropy += extra_I33t_entropy match
entropy

The first line is the most important: The match has an associated
frequency rank, where words like the and good have low rank, and words
like photojournalist and maelstrom have high rank. This lets zxcvbn scale
the calculation to an appropriate dictionary size on the fly, because if a
password contains only common words, a cracker can succeed with a
smaller dictionary. This is one reason why xkcd and zxcvbn slightly disagree
on entropy for correcthorsebatterystaple (45.2 bits vs 44). The xkcd example
used a fixed dictionary size of 2'" (about 2k words), whereas zxcvbn is

adaptive. Adaptive sizing is also the reason zxcvbn.js includes entire
dictionaries instead of a space-efficient Bloom filter — rank is needed in
addition to a membership test.

I'll explain how frequency ranks are derived in the data section at the end.
Uppercasing entropy looks like this:

extra_uppercase_entropy = (match) ->
word = match.token
return O if word.match ALL_LOWER
a capitalized word is the most common capitalization scheme,
so it only doubles the search space (uncapitalized + capitalized):
1 extra bit of entropy.
allcaps and end-capitalized are common enough too,
underestimate as 1 extra bit to be safe.
for regexin [START_UPPER, END_UPPER, ALL_UPPER]
return 1 if word.match regex
otherwise calculate the number of ways to capitalize
U+L uppercase+lowercase letters with U uppercase letters or less.
or, if there's more uppercase than lower (for e.g. PASSWORD), the number
of ways to lowercase U+L letters with L lowercase letters or less.
U = (chr for chr in word.split(") when chr.match /[A-Z]/).length
L = (chr for chr in word.split(") when chr.match /[a-Z]/).length
possibilities = 0
possibilities += nCk(U + L, i) for i in [0..Math.min(U, L)]
lg possibilities

So, 1 extra bit for first-letter-uppercase and other common capitalizations. If
the uppercasing doesn't fit these common molds, it adds:

The math for 133t substitution is similar, but with variables that count
substituted and unsubstituted characters instead of uppers and lowers.

Pattern matching

So far | covered pattern entropy, but not how zxcvbn finds patterns in the
first place. Dictionary match is straightforward: check every substring of the
password to see if it's in the dictionary:

dictionary_match = (password, ranked_dict) ->
result =[]
len = password.length
password_lower = password.toLowerCase()
foriin [0...len]
forjin [i...len]
if password_lowerli..j] of ranked_dict
word = password_lower[i..j]
rank = ranked_dict[word]
result.push(
pattern: 'dictionary'
ini
I
token: password[i..j]
matched_word: word
rank: rank
)
result

http://en.wikipedia.org/wiki/Bloom_filter
https://dropboxtechblog.files.wordpress.com/2012/04/formula_uppercasing.png

ranked_dict maps from a word to its frequency rank. It's like an array of
words, ordered by high-frequency-first, but with index and value flipped.
I33t substitutions are detected in a separate matcher that uses
dictionary_match as a primitive. Spatial patterns like bvcxz are matched with
an adjacency graph approach that counts turns and shifts along the way.
Dates and years are matched with regexes. Hit matching.coffee on github
to read more.

Data

As mentioned earlier, the 10k password list is from Burnett, released in
2011.

Frequency-ranked names and surnames come from the freely available
2000 US Census. To help zxcvbn not crash ie7, | cut off the surname
dictionary, which has a long tail, at the 80th percentile (meaning 80% of
Americans have one of the surnames in the list). Common first names
include the 90th percentile.

The 40k frequency list of English words comes from a project on
Wiktionary, which counted about 29M words across US television and
movies. My hunch is that of all the lists | could find online, television and
movie scripts will capture popular usage (and hence likely words used in
passwords) better than other sources of English, but this is an untested
hypothesis. The list is a bit dated; for example, Frasier is the 824t most
common word.

Conclusion

At first glance, building a good estimator looks about as hard as building a
good cracker. This is true in a tautological sort of way if the goal is accuracy,
because “ideal entropy” — entropy according to a perfect model — would
measure exactly how many guesses a given cracker (with a smart operator
behind it) would need to take. The goal isn't accuracy, though. The goal is to
give sound password advice. And this actually makes the job a bit easier: |
can take the liberty of underestimating entropy, for example, with the only
downside of encouraging passwords that are stronger than they need to be,
which is frustrating but not dangerous.

Good estimation is still difficult, and the main reason is there’s so many
different patterns a person might use. zxcvbn doesn’t catch words without
their first letter, words without vowels, misspelled words, n-grams, zipcodes
from populous areas, disconnected spatial patterns like gzwxec, and many
more. Obscure patterns (like Catalan numbers) aren’'t important to catch,
but for each common pattern that zxcvbn misses and a cracker might know
about, zxcvbn overestimates entropy, and that's the worst kind of bug.
Possible improvements:

e zxcvbn currently only supports English words, with a frequency list

skewed toward American usage and spelling. Names and surnames,

https://github.com/lowe/zxcvbn/blob/master/matching.coffee
http://xato.net/passwords/more-top-worst-passwords
http://www.census.gov/genealogy/names/names_files.html
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
http://en.wikipedia.org/wiki/Catalan_number

coming from the US census, are also skewed. Of the many keyboard
layouts in the world, zxcvbn recognizes but a few. Better country-
specific datasets, with an option to choose which to download, would be
a big improvement.

o As this study by Joseph Bonneau attests, people frequently choose
common phrases in addition to common words. zxcvbn would be better
if it recognized “Harry Potter” as a common phrase, rather than a semi-
common name and surname. Google's n-gram corpus fits in a terabyte,
and even a good bigram list is impractical to download browser-side, so
this functionality would require server-side evaluation and infrastructure
cost. Server-side evaluation would also allow a much larger single-word
dictionary, such as Google's unigram set.

o It'd be better if zxcvbn tolerated misspellings of a word up to a certain
edit distance. That would bring in many word-based patterns, like skip-
the-first-letter. It's hard because word segmentation gets tricky,
especially with the added complexity of recognizing 133t substitutions.

Even with these shortcomings, | believe zxcvbn succeeds in giving better

password advice in a world where bad password decisions are widespread. |
hope you find it useful. Please fork on github and have fun!

Big thanks to Chris Varenhorst, Gautam Jayaraman, Ben Darnell, Alicia
Chen, Todd Eisenberger, Kannan Goundan, Chris Beckmann, Rian Hunter,
Brian Smith, Martin Baker, Ivan Kirigin, Julie Tung, Tido the Great, Ramsey
Homsany, Bart VVolkmer and Sarah Niyogi for helping review this post.

Filed under: Security

¥ Twitter El Facebook
M LinkedIn

87 comments ¥

Related stories

Offensive testing to make Dropbox (and the Cross shard transactions at 10 million
world) a safer place requests per second

https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#
https://blogs.dropbox.com/tech/2018/11/offensive-testing-to-make-dropbox-and-the-world-a-safer-place/
https://blogs.dropbox.com/tech/2018/11/cross-shard-transactions-at-10-million-requests-per-second/
http://en.wikipedia.org/wiki/Keyboard_layout
http://www.lightbluetouchpaper.org/2012/03/07/some-evidence-on-multi-word-passphrases/
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T25
https://github.com/lowe/zxcvbn
https://blogs.dropbox.com/tech/category/security/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/#disqus_thread

Dropbox Connect Support

Install Twitter Help Center
Pricing Facebook Get Started
Business Google+ Contact us
Jobs YouTube Privacy & Terms

Please note: Sometimes we blog about upcoming products or features before they're released, but timing and exact functionality of these features may change from what's
shared here. The decision to purchase our services should be made based on features that are currently available.

© Dropbox, Inc.

Powered by WordPress.com VIP

https://www.dropbox.com/install
https://www.dropbox.com/pricing
https://www.dropbox.com/business
https://www.dropbox.com/jobs
http://www.twitter.com/Dropbox
https://www.facebook.com/Dropbox
https://plus.google.com/+Dropbox/posts
https://www.youtube.com/user/dropbox
https://www.dropbox.com/help
https://www.dropbox.com/gs
https://www.dropbox.com/contact
https://www.dropbox.com/privacy
https://vip.wordpress.com/?utm_source=vip_powered_wpcom&utm_medium=web&utm_campaign=VIP%20Footer%20Credit&utm_term=dropboxtechblog.wordpress.com

